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INTRODUCTION

One of the most active fields of research in the past

fifteen years has been the study of the molecular theory of

irreversible processes• The basic problems to be solved can

be phrased in terms of two questions: (a) How do the time

reversible equations of motion lead to a description of the

approach to equilibrium? (b) Given a technique for describing

the approach to equilibrium, what is the relationship between

the macroscopic transport coefficients and the properties of

the molecules of which a system is composed•

In the forefront of the efforts to answer question (a)

has been the work of Prigogine and co-workers. 1'2 They proceed

by writing an infinite order perturbation solution to the

Liouville equation. It is found that the ordinary phase space

representation of the N-particle distribution function is much

too cumbersome, and that a transformation to a new representa-

tion facilitates much of the ensuing analysis• By chosing as

a basis set the eigenfunctions of the free particle Liouville

operator, Prigogine and co-workers, solve the Liouville equation

much as Dirac solves the time dependent Schroedinger equation.

I •

•

I. Prigogine, Non-equilibrium Statistical Mechanics (Inter-

science Publishers, Ltd., London, 1962).

R. Balescu, Statistical Mechanics of Charged Particles

(Interscience Publishers, Ltd., London, 1963).

1
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The eigenfunctions of the free particle Liouville operator are

plane waves, and the solution of the full Liouville equation, in

terms of this basis set, amounts to a Fourier expansion of the

N-particle distribution function in a complete set of plane

waves. Thus the representation chosen is (k, p) instead of

(r, p). The main assumption of Prigogine and collaborators is

the following: The N-particle distribution function which

describes the initial state must have the property that all

reduced distribution functions remain finite in the limit

N is finite and constant, whereN--_ , V--_ , such that

N is the number of particles and V the volume of the system.

In this limit, the spectrum of k becomes continuous and sums

over _ may be replaced by integrals. A further assumption of

Prigogine and co-workers is that the N-particle distribution

function conforms to periodic boundary conditions. It is then

possible to identify the Fourier coefficients of the expansion

with the Fourier transforms of the Ursell functions in a

cluster expansion of the N-particle distribution function.

Thus, a connection is made between the lower order Fourier

coefficients and the lower order reduced distribution functions.

Prigogine and co-workers argue, as have Born, Green, 3 Yvon, 4

Kirkwood 5 and Bogolubov, 6 that since irreversibility appears in

,

4,

M. Born and H. S. Green, A General Kinetic Theory of Liquids
(Cambridge University Press, London, 1949).

J. Yvon, Actualites Scientifique et Industrielles (Hermann
et Cie, Paris, 195W).

5. J. G. Kirkwood, J. Chem. Phys. I__4, 180 (1946).

6. N. Bogolubov, J. Phys. (U.S.S.R.) 1__9_0, 265 (1946).
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the thermodynamic functions, and since these functions are

determined by the reduced distribution functions, the reduced

distributions must evolve irreversibly in time. They then

derive equations for the evolution of the Fourier components, or

what is tantamount to this, for the evolution of the reduced

distribution functions. These equations are general. They are

non-Markovian in structure and contain a term which describes

the destruction of the correlations. The equations are revers-

ible and are, therefore, consistent with the reversible equations

of motion. At this point, Prigogine assumes that after a very

short time the system forgets the initial correlations_cor-

relations are destroyed. Thus, a set of non-Markovian evolution

equations are derived. These equations have been used success-

fully to predict the non-Markovian effects in a ferromagnetic

spin system. When it is assumed that the Fourier components do

not change very much over the duration of a collision, Markovian

or Boltzmann-like equations are obtained. It is found that

Markovian equations are valid for the prediction of steady state

phenomena, but are not valid for the description of time depend-

ent processes such as occur in the presence of a time dependent

external force, or the approach to equilibrium of the distribu-

tion function. Using an Enskog-Hilbert iterative procedure,

Resibois and Prigogine 7 have shown that the Kubo relations 8 can

be retrieved from the master equation in the linear-Markovian

.

8.

P. Resibois and I. Prigogine (private communication).

R. Kubo, Lectures Theor. Phys. (Boulder) I, 120-203.



approximation. The Prigogine theory constitutes the greatest

single advance in the theory of irreversible processes in this

century.

In principle, a solution of problem (a) also provides

a solution to problem (b). For once given the non-equilibrium

distribution function, the fluxes of matter momentum and energy

are readily obtained. In practice, the Prigogine theory, as

presently written, cannot be used for the treatment of dense

fluids because it is basically a perturbation expansion carried

to infinite order. The method is useful for weakly interacting

systems where the ratio of the interaction energy to kT provides

a small expansion parameter, or for very dilute systems, where

the range of the potential divided by the mean free path pro-

vides a small expansion parameter. In a liquid, however, every

molecule is in continuous interaction with all its neighbors,

and neither of the parameters mentioned is useful. It is the

absence of a small parameter which accounts for most of the

difficulty in treating dense fludis. The main difficulty

resides in the fact that Prigogine has used the free-particle

Liouville operator as his unperturbed state. The free-particle

operator is indeed a very poor approximation to the real dense

fluid operator. Whereas it is a very good approximation for

very dilute systems. Thus the perturbation series converges

less rapidly the higher the density with this choice of the

unperturbed operator. The obvious thing to do would be to

select an unperturbed operator which is, in fact, closer to the

true operator. This is not a trivial task. There are immense
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difficulties in solving the Liouville equation for anything

other than for the case of nonlnteracting particles. A more

realistic unperturbed operator might be the hard core operator,

or the Maxwell Molecule operator. These are, of course, highly

idealized choices, but they might work. Nothing like this has

yet been done.

The only successful treatment of dissipation in the

dense fluid phase is based upon ideas which were introduced by

Kirkwood. 5 The guiding principle of Kirkwood's analysis is the

description of the lower order reduced distribution functions

only on a time scale such that a meaningful independent dynam-

ical event can be defined. Transient effects during the estab-

lishment of the steady state and the approach to the steady

state must be discussed using other techniques. Rapidly oscil-

lating external fields cannot be understood by these methods.

We must first note that a complete cluster expansion of the

integro-differential equation describing the N-body distribution

function can be obtained from a Kirkwood type analysis, i.e.

by use of coarse graining in time. In the steady state the

resultant equations are identical with those derived by

Prigogine, by Bogolubov and by Green. This may be taken as

confirmation of Kirkwood's intuitive approach to problems con-

cerning the steady state. Kirkwood proposed to describe the

motion of a molecule in a liquid as a quasi-Brownian motion. He

then derived Fokker-Planck equations for the singlet and doublet

distribution functions using the assumption that the mean momen-

tum transfer due to the fluctuating intermolecular force field
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was small relative to the mean momentum, and that the force

acting on a specific particle due to its neighbors has a cor-

relation time which is much smaller than the correlation time of

the momentum of that particle, i.e. the force on a particle

fluctuates many times while the momentum of that particle remains

fairly constant. This analysis has been criticized on the ground

that large momentum transfers occur during strongly repulsive

encounters. It is interesting that the Kirkwood relation

between the friction coefficient and the autocorrelation function

of the force acting on a molecule _----probably the most valuable

result of the analysis-- --when applied to the rigid sphere fluid

gives the same result as the Enskog theory. Nevertheless, the

existence of a very short range repulsive force contribution

and a somewhat longer range attractive force contribution to

the total intermolecular force suggests that a distinction can

be made between large and small momentum transfers.

Rice and Allnatt 9"I0 have constructed a theory of trans-

port within the framework of the Kirkwood philosophy. The

theory divides the dissipative forces into hard and soft contri-

butions and uses suitable but different dynamical descriptions

for the two contributions. It is assumed that:

a. The intermolecular pair potential may be represented

by a rigid core with a superposed soft potential. The

soft potential may have both repulsive and attractive

9. S. A. Rice, A. Allnatt, J. Chem. Phys. 3__4,21_ (1961).

i0. A. Allnatt, S. A. Rice, J. Chem. Phys. 3__, 2156 (1961).
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parts provided only that the range is large relative to

the range of a rigid core.

b. There exists a time _C

I. _ f<< _ Tp where

such that

and
f

are the force
P

and momentum correlation times

2. a dynamical event in _ is independent of a

prior dynamical event _ earlier

c. The basic dynamical event in a liquid consists of a

rigid core encounter followed by quasi-Brownian motion

in the rapidly fluctuating force field of the sur-

rounding molecules.

The analysis yields integro-differential equations for the sin-

glet and doublet distribution functions; the hard core contri-

bution leads to an Enskog---like modified Boltzmann collision

kernel, while the fluctuating force component gives rise to a

Fokker-Planck term characterized by a friction coefficient

defined by the soft force only.

The consequences of the Rice-Allnatt theory for the

special cases of the ion mobility, thermal conductivity and shear

viscosity have been examined by Rice and colleagues. II-15 For

II.

12.

13.

H. Davis, S. A. Rice, and L. Meyer, J. Chem. Phys. 37, 947
(1962).

H. Davis, S. A. Rice, and L. Meyer, J. Chem. Phys. 37, 2470
(1962).

H. Davis, S. A. Rice, and L. Meyer, J. Chem. Phys. 37 1521
(1962). --'

L. Ikenberry, S. A. Rice, J. Chem. Phys. 39, 1561 (1963).

B. Lowry, S. A. Rice, and P. Gray, J. Chem. Phys. 40 3673
(196%). --'
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simple dense fluids all the cases cited good agreement with exper-

iment is obtained. At present, it appears that the Rice-Allnatt

theory provides a fairly good qualitative and quantitative descrip-

tion of linear transport processes in simple liquids; but the

truth of this statement can only be fully ascertained when ade-

quate equilibrium data become available. The agreement between

theory and experiment cannot at present be fully Judged because of

the lack of accurate equilibrium pair correlation functions.

There have been other attempts to describe the transport

processes in a dense fluid. Rice and Kirkwood 16 have developed

a small step diffusion model and Gray 17 has developed a con-

figurational relaxation time model to describe these processes.

Both of these approaches are in fairly good agreement with each

other. They predict transport coefficients in fair agreement

with experiment. Again, the comparison of theory with experi-

ment suffers from a lack of precise equilibrium pair correla-

tion functions. It is possible to extend the small step dif-

fusion model somewhat further than has been done in the past,

since quantities such as the mean square force on a particle

are now available from measurements of isotope separation

18-2o
factors. Thus, knowledge of the pair correlation function

16.

17.

18.

19.

20.

S. A. Rice, J. Kirkwood, J. Chem. Phys. 3__I, 901 (1959).

P. Gray, Mol. Phys. _, 235 (1964).

G. Boato, G. Casanov% and A. Levi, J. Chem. Phys. 3__7,201 (1962).

G. Boato, G. Casanova, and A. Levi, J. Chem. Phys. 6__O0,44 (1963).

G. Boato, G. Casanova, and A. Levi. J. Chem. Phys. (to be
published).
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may be completely circumvented. Furthermore, one may now avoid

the very tenuous assumption first made by Rice and Kirkwood that

the pair diffusion tensor is equal to twice the singlet diffusion

tensor. It is also possible to use this model to calculate the

transport coefficients for a liquid which has the idealized

potential used in the Rice-Allnatt theory.

The objectives of this thesis are: l) to extend and

comment upon the small step diffusion model of Rice and Kirkwood,

2) to apply the Rice-Allnatt theory to fused salt systems,

3) to consider the possibility of casting the Rice-Allnatt

theory into a Fokker-Planck representation, and 4) to explain

the recent computer experiment by Rahman on Argon by an appeal

to a non-Markovian theory for the regression of fluctuations.



CHAPTERI

THE MODIFIED RICE--ALLNATT EQUATION

i. Introduction

A theory of transport processes in liquids systematically

developed from the Liouville equations was first formulated by

Kirkwood. 5 The fundamental assumption of this theory is that,

while the phase of a small number of molecules is, in general,

a complex random process, the phase, or a function of it, can

be treated as a simple Markov process if it is smoothed over a

certain time interval

The physical properties of gases are such that molecules

can be said to undergo collisions with other molecules, and that

between collisions they move freely. If a time can be chosen

in such a way that it is long compared to the duration of a col-

lision, but much shorter than the average time between colli-

sions, then the random process can be treated in the binary

collision approximation, and the Boltzmann equation is

retrieved 21 This approximation is best when the gas is dilute

When the gas is so dense that the probability of three or more
22

molecules interacting during the interval becomes significant,

21. J. G. Kirkwood, J. Chem. Phys. I__5, 72 (1947).

22. S. Chapman and T. G. Cowling, The Mathematical Theory of

Non-Uniform Gases (Cambridge University Press, Cambridge,

England, 1939).

I0
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then corrections to the equation must be found; only in the

case of a fluid of rigid spheres is the binary collision approxi-

mation rigorously correct for all densities, because the duration

of a collision is vanishingly small.23

On the other hand, the liquid state is such that every

molecule is continuously interacting with several others. In

this case it was assumed that the momentum changes were small

and frequent, so that the molecules could be said to behave as

Browian particles to a first approximation, their phase dis-

tribution functions satisfying Fokker-Planck equations. This

approximation has often been criticized on the grounds that it

restricts the possible interactions to those involving small

momentum transfer, while it is known that molecules must under-

go large momentum changes during the frequent interactions in

which they approach closer than the minimum of the pair poten-

tial well.

In a recent development of the theory of liquids, Rice

and Allnatt 9"10 have described a model in which the pair poten-

tial is idealized as a hard core with a superimposed soft poten-

tial. The statistical features of the interactions are separated

into binary hard core collisions, treated by means of a modified

Boltzmann collision integral, and soft forces which are assumed

to produce a quasi-Brownian motion. The numerical calculations

of transport coefficients which have been made for this model

are within a few percent of experiment, whereas those made with

23. S. A. Rice, J. Kirkwood, J. Ross, and R. W. Zwanzig,

J. Chem. Phys. 31, 575 (1959).



12

a pure Fokker-Planck equation only reproduce experimental data

within a factor of 2. The Rice-Allnatt model, therefore,

appears to give a fairly accurate picture of molecular inter-

actions in a liquid.

In this chapter we attempt to throw light on the precise

way in which the Rice-Allnatt theory is superior to the simple

Fokker-Planck approach. In Section 2 of this chapter we show

that the assumption of Brownian motion in the Kirkwood theory

is too strong a statement of the mathematical approximations

made. In fact, the Boltzmann collision integral can be replaced

by a Fokker-Planck operator in a dilute gas. Thus, the Fokker-

Planck operator can describe the large momentum transfers

occurring during collisions in a gas, and the question arises

as to why it cannot also do this for a liquid.

The effect of the hard-core collisions in the Rice-

Allnatt model is to introduce a modified collision term such as

that which appears in the Chapman-Enskog description of a dense

gas. This can be separated into a term formally identical with

the Boltzmann collision integral for a dilute gas, and a cor-

rection term, which represents the effect of local inhomogeneties

in the density. In Section 3 of this chapter we assume that the

pure Boltzmann term in the Rice-Allnatt equation can again be

replaced by a Fokker-Planck operator with an effective friction

coefficient _ H' which then combines additively with the soft

friction coefficient S" The kinetic transport coefficients

are calculated from the modified Rice-Allnatt equation, and com-

pared with the results obtained from the original equation. It
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is concluded that the Fokker-Planck equation can describe not

only the soft rapidly fluctuating forces, but also hard core

binary collisions of a grazing character. It cannot, however,

describe the head-on collisions which predominate when the system

is so dense that grazing collisions are inhibited, and which are

accounted for by the correction term.

2. Relation Between the Fokker-Planck Operator

and the Boltzmann Collision Integral

The Fokker-Planck equation for the distribution function

f for the phase (_,_)'of a particle is

p.

(i)

where _ is the average force to which the particle is subjected,

is the average velocity ate, and _ is the friction coeffi-

cient. In order to discuss the case of a dilute gas, we first

review the conditions under which Eq. (I) is valid. We sometimes

find it convenient to refer to the phase (_,p) as a (multidimen-

sional) random variable, which is its general meaning in the

theory of random processes.

Prior to the development of the theory of liquids by

Kirkwood, Eq. (I) was derived by considering a model of the

Brownian motion of colloidal particles. In order to derive the
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equation it is necessary to assume that (a) the randomizing

mechanism (fluctuating force acting on the particle) is not

affected by the value of the random variable (and hence the

random variable is a Markov process), (b) the time scales of

the correlation of the fluctuating force and of the momentum,

_F and m/_ , respectively, are so widely separated that a

time _ can be chosen such that

_<< _d<< m/1

and (c) the average force is a sufficiently slowly varying func-

tion of position that the particle does not experience signifi-

cant changes in it during _ If the fluctuating force is a

stationary process, then the changes of the random variable may

be written

<" apz_p > =

<

3snTt Octal; - %
(2)

with no explicit dependence on the time, but only on the length

of the interval _ The superscript 1 denotes the partial

ensemble average; the particle has the same initial phase in

each member of the ensemble. Terms in higher powers of

one are small if -_rC<< I, i.e., subject to (b) above.than
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These are well-known features of the theory of Brownian motion,

and we mention them here in detail because they are all true of

Kirkwood's theory of liquids. However, the derivation of Eq.

(1) in the latter theory is made from the Liouville equation,

and the assumption that the processes are Markovian is made at

a late stage, and not as a starting point. Consequently, we

are able to analyze further the nature and validity of the

assumptions than is possible in the former case.

The process of obtaining equations satisfied by the one-

and two-molecule distribution functions may briefly be described

in the following way: The distribution function for the iso-

lated N-molecule system satisfies the Liouville equation, and,

because of the equations of motion of classical mechanics, the

phase of the system at any time is uniquely determined by the

phase of the system at any other time. Thus the random variable

(_I' f2' .... ' _N' _I' _2' .... , _N ) (the phase of the whole

system) is a simple kind of Markov process, and in general,

the projections of this variable onto the subspaces of one and

two molecules (_I" _I ) and (_I' _" _i' _2 )' respectively, are

much more complicated processes than Markovian. Kirkwood's

postulate was essentially that a time interval _ existed

satisfying (b) above, over which these variables, or functions

of them, could be smoothed or coarse grained, such that the new

variables, or functions, would be Markovian.

In the course of the analysis, one obtains the now well-

known expression for the friction coefficient
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(3)

_l(t) is the instantaneous total force on Molecule 1 at a time

t, so that the integrand is the time correlation function of

the force

.'T" "-

where f(_/N-l.) is the distribution function of all the other

molecules conditional on the fixed initial phase of molecule 1.

denotes the position vectors of all molecules at time t, and

with subscript s' at time s' later.

In order to carry through the derivation it is necessary

to assume that the environment of the molecule, or pair of mole-

cules, is in a stationary condition, i.e., that f(I/N-l.!_s

independent of t. One should, therefore, have, for example,

independent of t, that is
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(4)

bt -- -- (5)

Performing the differentiation in Eq.

using the notation _(t) : d_
_ _-_= _,_,)_

acting on particle

(4) explicitly, we have,

where FI is the force

(6)

For s = O, Eq. (6) becomes

= _<p,(t),_-_(t) > - O

(7)

Differentiating Eq. (6) w.r.t, t for a second time yields
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(8)

or

(9)

In a stationary system it can be proved that a fixed ensemble

average of a random variable _i must have the following property.

That is the momentum correlation function must be an even func-

tion of time. Furthermore, since the momentum correlation

function in a stationary ensemble is independent of the origin

of time, by definition, we can shift the origin of time from t

to t-s, and get
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Substituting Eqs. (i0) and (II) into (9) it is found that

(t ) may substitutedThe identity Pl(t + s) = _ p + s
be

_I

in Eq. (12), yielding the result

(13)

Perhaps a more explicit derivation of Eq. (13) may be

achieved through a discussion of the Liouville equation. As is

well known, Liouville's theorem states that the N-particle

distribution function f _) obeys a continuity equation in the

complete phase space of the system.

* L- -- O
8t

where

N

JL:,ZI I
(14)
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m i is the mass, and Fi is the total force acting on particle i

when it is at position _i' moving with momentum _i" The factor

i Is introduced to make the operator L self-adJoint. This last

property is well known. We operate on _P l(t) with L to find

that

(15)

and

L___ :_ _'_
(16)

Thus

(17)

and when the self-adjoint property of L is exploited it is

found that

(18)
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Thus Eq. (9) becomes, on insertion of Eq. (18)

(12)

which is precisely Eq. (12) and Eq. (13) follows from this in

the same way it did before.

From Eq. (12) another interesting relationship which

will be used in the future may be found. When s = O, Eq. (12)

becomes

=_ (!

(19)

This yields on insertion into Eq. (19)

(20)

Certain statements may be made about the right hand side of

Eq. (20). This average may be written out in component form.
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Here, let i and J each represent the three cartesian components

of the vectors, then

.,-,j-,

(21)

The brackets indicate an equilibrium ensemble average. All

terms which have i#j disappear as the integrand in the ensemble

average of the momenta then becomes odd. Also, since the parti-

cular systems with which we shall deal are isotropic, the i@ J

terms for the gradient will vanish. Thus Eq. (21) becomes

(22)

Furthermore, the configuration and momentum averages can be

performed separately. From the equipartition of energy,

and

and from
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where U is the potential energy of particle I due to its inter-

actions with its surrounding. Thus it is found that

In terms of the normalized momentum correlation function,

defined by

_r(s) = _ <P,(t)
3r_KT

Eq. (4) and (5) become

_(o) = 0

From Eq. (3) and (24), the expression for the friction coeffi-

cient now becomes after integration

- "_'("c-)

(25)
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Clearly if one is to be able to obtain a friction coefficient

independent of _ , then there must be a range of _ for

whichl_T) _ I - _'C" + O(_ _) In other words, one has again

the conditions (b) and (c), namely

if "c_<< "c << _/5

The meaning of _F here is primarily the temporal extent of the

flat top of_(_)_" _F represents the magnitude of times for which

the motion of a molecule is coherent, i.e., predictable from a

knowledge of its momentum, and the force on it, at time s = 0.

It is easy to see that Eq. (25) is Just a restatement of

Eq. (2). For example, we have

-_ [W':)-,-] p,co)-- -" 5 _ (o)_ + 0 (.'_',)

Eq. (2) states that the average increments in momentum in a

short time _ must be proportional to _ . This is almost

trivially true for colloidal particles, since these are so

massive compared to the molecules with which they interact, that

the behavior of individual particles is close to the average

behavior. On the other hand, these relations should be satis-

fied for other systems provided that two time-scales can be
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identified, which differ by some orders of magnitude and possess

similar physical significance.

As an example, consider the dilute gas. Here two widely

different time scales are easily identified as the duration of a

collision _c and the mean free time _f, so that an interval

may be chosen to satisfy

(26)

The duration of a collision _C_ may be interpreted in much the
c

same way as _F; namely as a time in which the motion of a

molecule is predictable from a knowledge of its initial momentum

and the force on it at the initial instant. For times longer

than _c" a second collision may occur, completely uncorrelated

with the first, so that the extent of the flat top of_ will

be defined by _c" At the other end of the scale the mean

free time _f may be interpreted as the decay time of

since the momentum after a second collision is almost uncor-

related with its initial value, except for a small persistence

effect, and the free time has a probability distribution similar

to that for free paths F_f-lexp(-t/_ f)-

Since the phase distribution function for the dilute gas

satisfies the Boltzmann equation, the foregoing discussion

indicates that the Fokker-Planck operator (the right hand member

of Eq. (I)) is equivalent to the Boltzmann collision integral.

We do not give a derivation of this equivalence here since it
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has been considered in detail elsewhere, 24'25 and explicit

forms for the friction coefficient for a dilute gas have been

26
given by O'Toole and Dahler. It is sufficient to point out

that both the Fokker-Planck and Boltzmann equations may be

derived from the Markov integral equation by different treat-

ments, but that this is not sufficient to establish their

equivalence for a particular system; it is necessary first to

establish the foregoing physical arguments.

It seems unlikely that conditions (b) and (c) are

satisfied for a dense gas or liquid. There is evidence from

the scattering of thermal neutrons 27 and from recent computer

experiments 28 that_ has the form of damped oscillations.

It will be seen in Chapter IV that this behavior can be accounted

for by a non-Markovian theory for the regression of fluctuations.

There is also evidence that oscillations occur in _ even in

a rigid sphere fluid at sufficiently high densities. 29 On the

other hand, there is no reason apparent at the present time why

the influence of the soft N-body force cannot be regarded as

leading to a quasi-Brownian motion; this only requires that

Eq. (2) is satisfied by momentum increments due to the soft

24.

25.

26.

27.

28.

29.

E. A. Desloge, Am. J. Phys. 3__1,237 (1963).

J. Enoch, Phys. S1.3, 353 (1960).

J. T. O'Toole and J. S. Dahler, J. Chem. Phys. 33, 1496
(1960).

P. Egelstaff, Advan. Phys. ll, 203 (1962).

A. Rahman, (private communication).

T. Wainwright and B. J. Alder, Nuovo Cimento Suppl. 9,
ll6 (1959) •



27

force, and does not imply that the molecules are Brownian

particles in any other sense.

The foregoing discussion of the equivalence of the

Boltzmann collision integral to a Fokker-Planck operator under

certain circumstances, can be interpreted as a statement of

purely mathematical content. Thus, the properties of the Rice-

Allnatt equation should differ from those of a Fokker-Planck

equation only because it includes the contribution arising

from the modified Boltzmann term due to inhomogeneities in

density. We therefore propose to study the properties of the

Rice-Allnatt equation by modifying it to a Fokker-Planck

operator, with a friction coefficient combining the effects

of the Boltzmann term and the original soft-force Fokker-Planck

operator, and the correction term only.

3. Solution of the Modified Rice-Allnatt Equation

The modified Rice-Allnatt equation described in the

previous section is

(27)

where

(28)
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(29)

and

(30)

where go(2)(_ ) is the equilibrium pair correlation function,

, the diameter of the molecules, _ , the total friction

coefficient, _, a unit vector which defines the position of

molecule 2 with respect to molecule 1 at their distance of

closest approach, b the impact parameter and azimuthal angl_ _,

describing the scattering process,LIPl21 the relative speed of

particle 2 with respect to particle l, and _(1) the singlet

distribution function. The pure Boltzmann collision integral,

usually denoted by Z1, has been replaced by a Fokker-Planck

operator, with friction coefficient

(31)
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where _ s is the soft friction coefficient of Rice and Allnatt.

To obtain a solution of Eq. (27), a perturbation pro-

cedure is used in conjunction with an expansion in terms of

certain eigenfunctions of the Fokker-Planck operator. We write

the phase distribution function of a single particle as the

product of the zeroth order (local equilibrium) singlet distri-

bution function and a perturbation, viz,

(32)

where fo (I) (I) is the Maxwellian distribution, and _I is the

perturbation to this distribution;

(33)

If Eq. (32) is substituted into the left hand-side of Eq. (27)

and the space gradients in _i are neglected, we find, after

using the hydrodynamic equations

(34)
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_T - _._ T - 'T_- (__f)__-_ : c--Tk_T v',' _ (36)

(which are obtained by multiplying Eq. (27) successively by

Pl 2

m, _I' and 2m and integrating over the phase space of particle

I) to eliminate the space and time derivative of the volume per

molecule _ , the local hydrodynamic velocity _ , and the

local temperature T, that the streaming term is

(37)

"_-a'-/ L_ +

where W1 L_--_--F)[' ]= _ _,-_c is a dimensionless

peculiar velocity and _ = W_lW_l -

dyadic of _I" The quantity f

WI 2 is the traceless
3

m
is the mass density, @
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cv is the specific heat at constant volume per molecule, and p

the hydrostatic pressure. It must be added that the equations

of change (34), (35), and (36) are derived by considering the

distribution function to be Maxwellian. This is the procedure

22
used in the Chapman-Enskog solution of the Boltzmann equation.

The term J2 in Eq. (37), which we shall henceforth call the

excluded volume term, may be handled in the steady-state approxi-

mation by analyzing the hard core dynamics in detail. We omit

the details of our calculation, and merely indicate where they

lO
can be found.

The streaming term and the excluded volume term in the final

equation may now be combined

(39)
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+( ,_v / ( Z +

(40)

and

(41)

The equation can be rewritten in the following form after first

transforming from _ to W I on the left-hand side,

_W," _-"X_--l_l_ll)_l(_l ] : _ " f_r I -_T

where

#

•,- L_: vrbc

(42)

B

(43)
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I<I = K"
(44)

and

(45)

From the linear form of Eq. (22), it is seen that the

perturbation function can only depend upon the temperature

gradient and the velocity flow gradient. This suggests the

form of the solution to be

(46)

The Auxiliary conditions

,_ otp, oj (47)

(48)
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are imposed on the perturbation function to insure that _F ,

tL , and T are the local thermodynamic variables. The func-

tions K and L in Eqs. (40) and (41) are the same as those that

appear in the Chapman and Enskog theory of the dense gas. There

is a theorem due to Hilbert 30 that the inhomogeneities in a

Fredholm integral equation must, when multiplied by the solu-

tions of the associated homogeneous integral equation and

integrated over the argument, give zero. Thus, since mass,

momentum, and energy are the solutions of the associated homo-

geneous equation for the dense gas, we have the following ten

conditions on K and L:

s

where M = K or L.

30. See, for example, R. Courant and D. Hilbert, Methods of

Mathematical Physics (Interscience Publishers, Inc., New

York, 1954), Vol. I.
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Our inhomogeneities conform to these conditions.

tion (42) may now be separated into

Equa-

(5o)

and

L I

(51)

Equation (51) can further be separated into

= + U
(52)

where

= _ _(_" l+_

(53)

and

.. (')_.'='i _) .

(54)
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(55)

and

(56)

Thus _I may be separated as

(57)

and Eq. (51) becomes

F_J'_] = C '_'G v_"[_e (-w._)v.._.
(58)

and

(59)

The inhomogeneities K', L (I)', L(2)' , may be expressed
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in terms of the Sonine polynomials in Wl 2, S_I_ m)'

and S,1_ (m), respectively, as

- [_-,ec-w,_)/_'_-] S,o_

s ] _o)+ (3c +,,.s_,_J w,
(60)

(61)

and

[ D' c,_ .7 gl,)1$o,¢)j_pC-w,')_,,,=
(62)

where

: _) 15"-"_ : -_oC

(63)
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c._ = __ _-i_!c,,,,,--,,i)!i!
J

Now it may be shown that the polynomials $3/2(m)_i , Ssl (m) _,-_

and Sl/2(m) are, when multiplied by exp(-Wl2 ), eigenfunctions

of the Fokker-Planck operator• with eigenvalues -2 (2re+l),

-4(m+l), and-4m, respectively• so that_l, _I (I) and BI(9)

may be expressed in terms of these polynomials only. Thus

tm)

A,__-w, 5- _. S.,.(w,')
ta_l

(64)

(65)

and

(66)
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The relations (46), (47) and (48) impose conditions upon these

series which they must satisfy before being inserted in Eqs.

(50), (58) and (59). Inspection shows that A 1 is affected by

Eq. (47), BI(2) by Eqs. (46) and (48) and BI(1) is unaffected.

Thus we find a = 0 and b (2) (2)
o o = bI = O. Use of the orthog-

onality and recursion relations for the Sonine polynomials then

leads to

dl_ = (D rl) I

(67)

b(O) --- -- 5

-O
J

fl<%:I [..,-e<
(68)

and

_-_ I

(69)

_is given by
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(70)

where J_2'2)_f is the reduced hard-core cross section. (This is

the value derived by Chapman and Cowling for isothermal tracer

diffusioni.

The solution in the linear approximation may now be

obtained from Eqs. (32), (33), (42)-(46), and (64)-(69); we

do not write it here.

4. Evaluation of the Transport Coefficients

In this section the kinetic and the collisional trans-

_rt components of the shear viscosity and thermal conductance

are calculated. The starting point for this calculation is

the work of Irving and Kirkwood 31 who derived expressions for

the stress tensor and the heat flux by identifying observable

fluxes with the ensemble average of the corresponding micro-

scopic fluxes. Their results are

(71)

31. J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817
(1950). n
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(73)

where

f __a)

I_I _ -I

(74)

(75)

and _I is the position of a field point in the fluid, _K

and _ are the kinetic and intermolecular force parts of the

stress tensor and _ and _ are the corresponding parts

of the heat flux. Integration of these expressions reduces
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them to the point where only the pair distribution function

appears. The pair distribution function may then be related

to the singlet distribution functions

_ {1,.) _l,.] _ {i') t"' (')

(76)

(2) evaluated at
Consistent with our derivation we denote _ o

R2-R I =_-_ in Eq. (56) as _ (_-). The resulting fluxes are,

after the binary dynamics are analyzed,

(77)

(78)

7_ a . <,_i ,.-,F>,__ i'<,,.-0_a) _-p,
(79)
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_tb_ _tt)

It must be remembered that the only intermolecular force con-

(8o)

tribution to the fluxes that is being calculated is that due

to the infinitely repulsive hard core. The solution obtained

in the previous section for Eq. (32) is used in these expres-

sions and the results are compared with the linear phenome,

nological laws

(81)

and

=
(82)

where p is the hydrostatic pressure, _ the shear viscosity,

the bulk viscosity, _ the symmetrized rate of strain

tensor, and _ the thermal conductivity. By comparing the

microscopic fluxes calculated above with (81) and (82) the

transport coefficients may be identified. We represent the

kinetic part by a subscript k and the hard core part by a

subscript _ .
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The transport coefficients are written in terms of

the coefficienct which appear in the perturbation to the

Maxwellian distribution

.... _,.,,_, )w,._, _T
, C;'t _ Co)

(83)

They are

(84)

,5--V- _o_ 6__

(85)

(86)
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(87)

(88)

We may immediately write the transport coefficients from the

modified Fokker-Planck equation which we have solved in Sec-

tion 31. These are

(89)

/ _"_" dq° C6=')) (9o)
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(91)

8
(92)

5. Discussion

The relation of the Rice-Allnatt theory 9'I0 to other

theories of dense fluids may be studied on the basis of a

comparison of the expressions given by these theories for the

transport coefficients. Since for all the theories the trans-

port coefficients may be expressed in the form of Eqs. (84) to

(88), it is sufficient to compare only the coefficients al,

bo (I), bm(2) There are displayed in Table I for (I) the

dense fluid hard-sphere fluid, 32 (2) the Rice-Allnatt

theory, 9'I0 (3) the modified Rice-Allnatt theory of the pre-

sent paper, and finally, (4) the pure Fokker-Planck theory of

Kirkwood. 5 It should be noted that the last mentioned coeffi-

cients are obtained when the inhomogeneities K and L are

derived entirely from the streaming term Eq. (37).

32. C. F. Curtiss, "Kinetic Theory of Gases", OOR-3 (January

!953).
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From the introductory discussion of the Rice-Allnatt

equation, it is clear that the coefficients (2) should be of

greatest generality, and this is evident from Table I. It

should be noted also that the same structure is exhibited by

the coefficients from the modified theory (3), though with

some differences in the numerical coefficients which are

mentioned again below. The coefficients (I) for the dense

hard sphere fluid differ from those of (2) by the omission

of the soft friction term in the denominator, while those for

the pure Fokker-Planck equation (4) differ from (2) in that

the excluded volume term in _3 is not present in the

numerator.

The appearance of differences in the numerical factors

upon comparison of the Rice-Allnatt coefficients and those

of the present paper require comment. It was argued in

Section 2 of this chapter that the Boltzmann collision inte-

gral for a dilute homogeneous gas (i.e., no J2 term) is

equivalent to a Fokker-Planck operator, and this concept was

extended to the formally identical term in the Rice-Allnatt

equation. It must be pointed out, however, that this equi-

valence is only exact if the friction coefficient possesses

the momentum dependence implicit in the Boltzmann term. This

momentum dependence has been thoroughly investigated by O'Toole

and Dahler, 27 but the functions they obtain are so complicated

that no attempt has been made to incorporate them here. The

effect of this momentum dependence, had it been incorporated

in our calculation, would have been to alter the weighting
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of different momentum ranges in obtaining the solutions to

the equations, so that different numerical factors would

appear multiplying _(2,2) in the solutions for the heat

flow and shear parts of the equation. We suggest, but with-

out proof, that this is the reason for the observed differences.

The coefficients an(n_l) b (I) (n> I) b (2)(n_ I)• n ' n

(cf. Eqs. (67)--(69)) in the solution of the Chapman-Enskog

equation and the Rice-Allnatt equation do not vanish, as ours

do, because the functions of _i used in the series expansions

of_l and_l are not eigenfunctions of the Boltzmann collision

integral. However, they are usually assumed to be small.

Insofar as the equivalence of our modification of the Rice-

Allnatt equation to the original equation is established by

the close similarity of the expressions for the transport

coefficients, the fact that we find that these coefficients

vanish is a strong indication that they are indeed small for

the original equation.

We conclude, then, that a Fokker-Planck operator can

describe, not only soft rapidly fluctuating forces, but certain

types of hard core binary collisions; namely• those satisfying

Conditions (b) and (c), and Eq. (5), of Section 2 of this

chapter. The omission of the excluded volume terms from (4)

shows that the Fokker-Planck operator cannot describe those

collisions influenced by the inhomogeneities in density

represented by J2" In other words the Fokker-Planck operator

can describe binary collisions in which a large fraction have

a grazing character, but cannot describe the predominantly
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head-on collisions which occur when a system is so dense

that grazing collisions are inhibited. Thus the role of hard

core collisions in the theory of liquids is to emphasize the

importance of collisions resulting in large angle deflections,

and this is accomplished by taking account of the fact that

the presence of hard cores reduces the available volume.



CHAPTER II

SMALL STEP DIFFUSION MODEL

i. Introduction

The major concern of the statistical theory of trans-

port phenomena in dense fluids is the accurate calculation of

the macroscopic fluxes of energy and momentum from the purely

microscopic properties of the molecular system. Dilute systems,

such as rare gases, have been successfully treated using the

22
Boltzmann equation of transport. This equation can be solved

by the methods used in the previous chapter. The properties

of the Boltzmann equation are well understood, 33 and its

derivation has been carried through using statistical consid-

erations. 1'21 The Boltzmann equation correctly represents the

molecular dynamics only when the density is sufficiently low

that individual molecules spend a large part of the time moving

about freely; that is, when molecules spend a very small part

of the time interacting with other molecules. When this is

true, the number of three body interactions is infinitesimally

small compared to the number of two body interactions, and the

transport properties of the gas may be accounted for simply

on the basis of binary interactions.

In sharp contrast with the dilute gas, the dense fluid

33. H. Grad, Comm. Pure Appl. Math. _, 331 (1949).

51
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consists of molecules which are in continuous interaction with

their neighbors, and the simplicity of transport by binary

collisional transfer of momentum and energy is completely lost.

To account for the transport phenomena in these fluids a method

which is radically different from that used to understand dilute

systems must be adopted.

One very successful method for predicting the transport

coefficients has already been mentioned. Starting from the

Liouville equation, Kirkwood derived a set of generalized

Fokker-Planck equations 5 to describe the evolution in time of

the reduced distribution functions. In the course of his

analysis he obtained an expression relating the friction

coefficient to an integral over the autocorrelation function

of the force acting on a single particle. The entire analysis

was guided by ideas from the stochastic theory of Brownian

motion. 3_'35'36 Irving and Kirkwood then derived statistical

formulae for the transport coefficients. 31 These formulae

were used in conjunction with the moments of the Fokker-Planck

equations for the computation of the shear viscosity, and the

thermal conductivity of liquid argon. In order to perform the

computations accurate pair correlation functions are needed.

There have been a few attempts to obtain these functions by

neutron or x-ray scattering experiments, but the accuracy

34. G. E. Uhlenbeck and L. S. 0rnstein, Phys. Rev. 36,823 (1930).

35. S. Chandrasekhar, Revs. Mod. Phys. 15, 1 (1943).

36. M. C. Wang and G. E. Uhlenbeck, Revs. Mod. Phys. 17, 323
(1945).



53

of this work leaves much to be desired. The extant theories

are very approximate. When the pair correlation functions

obtained from theory and experiment are used to calculate the

pressure or heat of vaporization of argon liquid it is fouhd

that there is very poor agreement with experiment. In fact

these functions give such poor pressures that one is tempted

to pay no attention to them at all. Since the transport

coefficients can be computed only if these functions are

known, one is hard put to test any theory of transport in the

dense fluid. Kirkwood and co-workers 37 attempted to improve

the pair correlation functions by introducing parameters into

them which were subsequently adjusted to give the correct

pressure_c_h_at vaporization. The thermal conductivities

and shear viscosities computed by this method were in error

by roughly a factor of two.

Kirkwood's equation was then criticized for neglecting

the strongly repulsive interaction which takes place when

two atoms come very close to one another. This led Rice and

Allnatt 9,10 to introduce their model for the important dynamical

events in a dense fluid. They argued on the basis of an

idealized intermolecular potential. To represent the highly

repulsive interactions between the particles they chose a hard

core potential and to represent the soft interactions they chose

a superposed Lennard-Jones potential. Using Kirkwood's time

smoothing techniques, a set of integro-differential equations

37. R. W. Zwanzig, J. G. Kirkwood, I. Oppenheim, and B. J.

Adler, J. Chem. Phys. 2__2, 783 (1954).
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were derived which we shall call "modified Fokker-Planck"

equations or Rice-Allnatt equations. These equations describe

the motion of a particle on the basis of two widely separated

time scales. A particle is imagined to undergo a hard core

interaction of zero duration with a neighboring particle,

and then to suffer small momentum changes and thereby perform

a sort of Brownian motion in the fluctuating force field of

its neighbors. Thus the Rice-Allnatt equation consists of

two parts; one corresponding to the hard core encounter--

an Enskog term, and one corresponding to the Brownian motion--

a Fokker-Planck term. These equations, as has been said

before, are quite successful in accounting for the transport

coefficients of argon, krypton, and xenon.

The Rice-Allnatt equation has again been modified,

with some success, as has been thoroughly explained in the

preceeding chapter. On the basis of this work the failure of

Kirkwood's original equation is fairly well understood.

In all this work, many approximations have been made.

Although these approximations have recently been put on a

firmer basis by the computer calculations of Rahman, 28 as we

shall see later, it is indeed interesting to explore another

model first proposed by Rice and Kirkwood; 38 that is, the

small step diffusion model. This model will be considerably

amplified and some of the more tenous, and in fact poor,

approximations will be eliminated.

38. S. A. Rice, and J. G. Kirkwood, J. Chem. Phys. 31, 901
(1959).
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Starting from the exact statistical mechanical equa-

tions, Rice and Kirkwood assumed that: (a) the gradient of

the pa_r interaction potential between molecules at time t + s

can be expanded in a Taylor series about the gradient at time

t, and terms higher than the second may be neglected, (b) the

distribution in pair space may be approximated as the product

of the local equilibrium pair correlation function in coordi-

nate space and the zeroth order distribution function in

momentum space, and (c) the diffusion tensor in pair-space

may be approximated as the direct sum of the diffusion tensors

in slnglet space.

We shall eliminate assumption (c), which is a very

poor assumption for dense systems indeed. It should be added

here that in (c) a tacit assumption is made that the doublet

diffusion coefficient exists, an assumption that must also be

made here. This need not be true. This theory shall be used

in conjunction with the modified Lennard-Jones potential.

Furthermore, the hard-core friction coefficient shall be

obtained by an entirely new method. The result is in entire

agreement with the Enskog equation, and is quite easily

obtained. It does not suffer from the weaknesses of previous

derivations which have invariably assumed either (1) hard core

collisions are described by a Langevin equation, 39'40 (2) by a

39.

40.

J. T. 0'Toole and J. S. Dahler, J. Chem. Phys. 33, 1496
(1961).

F. C. Collins and H. Raffel, J. Chem. Phys. 23, 1454
(1955).
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42
tion is exponential.
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or (3) the momentum correlation func-

The treatment of the dense fluid presented herein has

a few advantages over the more exact treatments discussed. It

relates the coefficient of shear viscosity and thermal con-

ductivity to the diffusion coefficient and other measurable

thermodynamic quantities, and thereby circumvents the source

of greatest error in any comparison between theory and exper-

iment--the pair correlation function.

2. The Coefficient of Self-Diffusion

We begin by using assumption (a) and (b) to determine

the self-diffusion coefficient in a dense fluid whose molecules

interact through a modified Lennard-Jones potential, defined

as follows:

(93)

The proceedure adopted here is to consider a two com-

ponent fluid containing N I molecules of species I and N2 mole-

cules of species 2, interacting with potentials of intermole-

cular force VII , VI2 and V22. Molecules of species 2 are

41. E. Helfand, Phys. of Fluids _, 681 (1961).

42. H. C. Longuet-Higgins and J. A. Pople, J. Chem. Phys. 2__5,
884 (1956).



57

considered identical to the molecules of species 1 in all

physical properties except that they are isotopically tagged.

In this case Vll , V12, and V22 are equal, and are represented

by Eq. (93).

The dynamical behavior of this system is completely

contained in the N-particle distribution function f(N)(R(N),

p(N), t), which represents the probability density of finding

the system point at R(N), p(N) in the complete 6N-dimensional

phase space of the system (molecules have no internal degrees

of freedom. Here R(N), _P(N) represent the N position vectors

and N momentum vectors of the N particles in the system. The

evolution in time of the N-particle distribution function is

given by the Liouville equation.

Kirkwood, 5 showed that any observable quantity may be

identified with the ensemble average of the time average of the

corresponding microscopic quantity. This statement becomes

obvious when it is realized that the measurement process of a

time dependent quantity involves the following steps: (i) a

system is chosen from an ensemble of identical systems, (2) the

time dependent quantity is then observed over a small interval

of time over which it is averaged, (3) this procedure is

repeated on all the members of the ensemble, and (4) the

quantity is averaged over all these measurements.

Kirkwood further showed that the time average and the

ensemble average of a dynamical variable can be commuted;

that is, that the order in which these averages are performed

does not matter. The proof of this statement rests on the
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fact that f(N) satisfies the Liouville equation. Time and

ensemble averages using lower order distribution functions

need not commute, and in general do not commute, because

these reduced distribution functions do not satisfy Liouville

equations, but rather Boltzmann-like equations in their sub-

phase-space.

The statements just made may be summarized in the

following manner. If O((R (N), p(N), t) is a dynamical

variable, then the corresponding observable is

- -- -- -- -- --] T" -- -

(9_)

where _ is the interval over which O_ is observed. _ must

be chosen such that it is longer than the period of fluctuations

in the instrumental recording system. Time smoothing is used

as a formal procedure to obtain Markovian kinetic equations

from much more complicated non-Markovian kinetic equations.

The procedure consists in averaging the distribution functions

over an interval of time chosen sufficiently long that memory

of some initial state is wiped out. This procedure eliminates

transient effects from the kinetic equation, and necessarily

wipes out any possibility for a return of the system to its

initial state. Thus, irreversibility is introduced into the

kinetic equations. Nothing has to be said about the instrumental
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times. Time smoothing is a formal method whereby information

is sacrificed to simplicity. The equations obtained using this

procedure can only be used for the computation of transport

coefficients in steady state systems, and not for a description

of the approach to equilibrium for this requires the detailed

knowledge of the memory of the initial state which has been

sacrificed. We mention here the instrumental view of time

smoothing as it was Kirkwood's view when he first developed

the formal procedure, and it is much more concrete.

Using this prescription for finding averages, the

number density of particles of species_ at the field point

l , at time t is

,=, (95)

where )

(N_ _ 0 _)

is a Dirac delta function and

(96)

is the time coarse grained N-particle distribution function at

time t, for an ensemble of identical systems and obeys the

Liouville equation

## + aj.% # : 0
(97)
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It is now assumed that the molecules in our two component fluid

interact with central forces only, the intermolecular potential

is a sum of pair potentials and external fields of force are

absent. Thus

V- o, : io' . (98)

where _[, _ -_ [__j.- _[ I.

The force exerted by _j on C_

J" =

is

(99)

and the total force acting on particle _[ , due to the_-I

other C_' particles, and the N_j_ particles is

The mean force _(_) acting on a molecule of species C_

located at the field point r I is

(i00)

(iOl)
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Multiplying Eq. C97) by f_(R_-_) and integrating over

the whole phase space d_)_P_) yields, neglecting inertial

terms, and terms of the order of the non-equilibrium terms in

the kinetic contribution to the stress tensor,

(102)

The temperature in the non-equilibrium system is defined by an

ensemble average of the kinetic energy per molecule performed

over both components in the fluid. It is assumed that the

average kinetic energy per particle is the same for particles

of different species.

Bearman and Kirkwood 43 argue that the thermodynamics

of isothermal systems in external force fields clearly shows

that if the gradient of the chemical potential at a point in

the system is equal to the external force at that point then

the system is in equilibrium. Thus by imposing a suitable

external field on our system we may establish a concentration

or chemical potential gradient which is the same as that in

the diffusing system we are interested in. By putting this

external force into the Liouville equation, Eq. (97) and

performing the same operations which led us to Eq. (102) it

is found that

43. R. J. Bearman, J. G. Kirkwood, and M. Fixman, Progress

in Statistical Mechanics (Academic Press, New York,

1958), Vol. I.
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(I03)

Here r_ (q _ is the average intermolecular force acting on a

particle of species O_ at a field point r l in the fluid, when

such a suitably chosen external force is imposed. Subtracting

equation (102) from (103) yields

-- (.,_ _ ( ,, o)
(r,) _ r_or,) = v,__(r, ). (lO4)

Now the phenomenological equations in irreversible thermodynamics

provide a linear relationship between the fluxes of matter in

isothermal diffusion and the driving forces for diffusion, which

are chemical potential gradients divided by the temperature.

When the phenomenological equations for isothermal diffusion in

a two component system are inverted, a relation is found which

gives the chemical potential gradient in terms of the diffusion

velocities of the two components at _I

v_,,u._cr,) -_ N,._,_[_,.c_,)- __,(,;,)]. (IO5)
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Here

and _,z is the friction coefficient.

(13) and (12) it is found that

Thus, combining Eqs.

]

Now the equilibrium force on a particle in the absence

of an external field is merely due to the intermolecular inter-

action. In a system, such as the one we are investigating,

the potential of intermolecular interaction between unlike

particles is the same as that between like particles. In this

case, the equilibrium mean force acting on a diffusing particle

in the absence of external forces is zero. Then Eq. (106)

becomes

]' _1"1(')(q] = N_._,_(r,)- __bC'(rJ) (i07)

Here _ (q) is the force which must balance the perturbing

external force that must be imposed to create the chemical

potential gradient, i.e., the chemical potential gradient itself.
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The procedure adopted here, therefore, is to calculate

the force on particle OC which is necessary to create a rela-

tive diffusion velocity _U_- __' at point _I' in the fluid.

We proceed to evaluate _ , where _ = _°_ +_j , by first

commuting the time and ensemble averages of the force given

by Eq. (9)utilizing Eq. (2)

m L N _ J

(lO8)

where _ ,_ L (t+_ ]c_,

Using Eqs. (lO1) and (108) to calculate the average force on a

particle of species _ located at El, yields

(109)

Equation (109) may be written in the following way:

(llO)
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The averaging procedure has intentionally been divided into two

steps. The first integration averages the force on particle _

C_l at r I due to particle _j at a fixed distance _ +_r;)

from it, in a medium of NI+N2-2 particles. The second integra-

tion is over coordinates of particle_j _ _a_ Actually

the second integration is over the relative position of _ with

respect to _I . Thus

_j #" ,

D

(iil)

At this point we introduce the modified Lennard-Jones

potential defined by Eq. (93). In this case the force

may be divided into two components

¢

where the left-handed subscripts H and s represent the first

and second regions in Eq. (93) i.e. the hard and soft components

of the intermolecular force.

The average in Eq. (lll) may likewise be divided into

two parts when Eq. (ll2) is introduced
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(113)

where <_ F_,(_)> and < sF_,(_)> are obviously

(I14)

and c = H or s.

The term s _+_] may be evaluated by considering

the hard core collision dynamics. This is a very well known

calculation, and will merely be outlined here. One proceeds in

the same manner as one does in constructing the collisional

contribution to the Boltzmann equation. Should molecules _I

and _ fail to suffer a mutual hard core collision during the
q

interval (t, t +_) then the momentum increment, and conse-

quently the above integral will be identically zero. In the

event that _l and _ do collide within _ then

: m,)_ (llS)
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_g& k is the unit vector directed from _I
where _4_ : _ , _

to 8_ at the instant of their closest approach. The situation

would of course be terribly complicated if _I were allowed to

undergo hard core interactions with more than one other particle

in the interval _ To eliminate this possibility we choose

Q_ much larger than the duration of hard core collisions

(O÷) but small enough so that multiple encounters are not

permitted. We must also require that _ be no greater than the

mean transit time between collisions otherwise we would under-

count the number of collisions. A collision cylinder is then

constructed around particle I, and the procedure used is

identical to the procedure used in the Rice-Allnatt theory.

The basic approximation used here is that the particle tra-

jectories are nearly linear so that the collision cylinder may

be extended to the full length(g_i°Cgl)_ and the cross-section

for the collision is unaffected by the presence of the soft

force. The effect of this approximation is to underestimate

the hard core contribution to the diffusion process, because

there will be a higher frequency of hard core collisions due

to the existence of the attractive soft force. This can readily

be shown by the following argument. Choose a coordinate system

which is moving with the velocity of particle i, and place

particle 1 at the origin of this system. Observe the motion

of particle 2 relative to the origin of this coordinate system.

Consider the assymptotic motion of particle 2, that is, the

motion of 2 when its separation from I is greater than the

range of their intermolecular potential. This assymptotic
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motion may be specified by an impact parameter b. If the two

particles interact according to a hard core potential alone,

then, if b _6 _ , particle 2 will never undergo a momentum

change. If, however, the two particles interact according to

a hard core and a superposed Lennard-Jones potential defined

in Eq. (193), then, if b _ , but is smaller than the range

of the soft branch, there may be a hard core interaction.

Thus there will certainly be a greater frequency of hard core

interactions in a fluid which has Eq. (9_ has its potential,

than in one which has a hard core alone when these two fluids

are at equal temperatures and densities. It is therefore

obvious that the procedure we use underestimates the hard con-

tribution. This is also the case in the Rice-Allnatt theory

which therefore suffers from the same difficulty.

We have the following set of equations after substi-

tuting Eq. (115)into Eq. (114):

where _jjC_, are the velocities of particle _i and _I
J

before collision. When _c_l_j ) is approximated using assump-

tion (b) in the introduction

(116)

(ll7)
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C_.)_ _o) ,.
where _o (/_j.,_lJ is the equilibrium pair correlation function

and f(1)(i) is the singlet distribution function for particle

of type i when account is taken of the conditions necessary to

have a collision, it is found that

_',) 0 c') .
(i18)

Here @_ is the distance between the centers of particles of

types _ and _ when these two particles are in contact, and b

is the impact parameter defining the hard core collision, and

is the azimuthal angle specifying the hard core collision.

To proceed further we must perform a rather tedious

set of transformations and angular integrations. First it is

necessary to specify the singlet distribution functions that

we are using. As stated in the introduction to this chapter

these will be chosen as the zeroth order momentum functions,

i.e., functions which are Maxwellian about the local velocity,

(i19)
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In order to use this in Eq. (118) it is necessary to remember

that particle _ is at _I and _ is at _i + _ Thus

Eq. (I18) becomes

(i20)

• _ -,_ _.(c_-_(¢ _ _ (5

bdbd¢ dc_d.._
1

where _ = -- We must therefore evaluate the integral
2kT

- - -- .... -- -- (i2i)
r.(_-_))o

in terms of which

(122)
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(123)

Here V_ and V_ are peculiar velocities.

series of coordinate transformations.

We now perform a

Let

_ - v_-v_

(124)

Here M_e --_.÷m#l,y_, _/_

vo:'--(_X+
-" WI_

may be found in terms of X and y.

(125)

From Eq. (125) it is found that

(126)
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and _ are the center of mass peculiar velocity and the rela-

tive peculiar velocity, respectively. We want to transform

these to the center of mass and relative velocities. To do

this we first see that

(127)

If we now define the center of mass and relative velocities as

(128)

and the hydrodynamic center of mass and relative velocity as

(129)
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(i30)

and the result is

(i31)

Now

(13e)

An assumption of this theory is that the relative mean velocity

is small, and all second and higher order terms in this

variable are negligible. Secondly, it is assumed that the

gradients of the mean velocities are small enough that terms

of order (_-_)_(R) are negligible when R is of the order of

interatomic separations. In this approximation

(133)
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the second exponential on the right-hand side of the equation

may be expanded about _= o . This gives

(134)

When this is put in _ and the angular and center of mass

integrations are performed, it is found that

(135)

Thus when this is substituted into Eq. (52) one obtains the

result that

(136)

We must now evaluate the soft force contribution to

the mean soft force acting on particle _l The soft force

contribution may be written down from Eq. i(I14)
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(137)

Noting that all the molecules of the same species make the same

contribution to the average force on _l at r_l, Eq. (137) may

be written

.%_.,-5_)S(_-_d_'"_P_"_]d-_°___ - _.,,_,

(is8)

This integral may be evaluated using assumption (a)

outlined in the introduction. That is

S S

(139)
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It is now convenient to introduce the reduced distribution

functions f(n) which are related to the probability density

f(N) by the definition

rcN)
l. - (a)..on)^ CN-_)_ (N-n)\

_/4- _ )
[N-A_

(i4o)

where _C_I_-_] is the relative probability density in the

subspace R(N°_)P t_a_ , of finding the coordinates and momentum

of N-n particles at R (N-n) and p(N-n) given that the other n

particles have specified coordinates and momenta R (n) and p(n).

In the case that the positions and the momenta of a pair of

molecules, one from the species _ , and the other from the

species _, are specified, it is assumed that the pair distri-

bution function may be approximated as in (b) of the intro-

duction. This assumption was also used in Eq. (134). In a

similar manner

(i41)
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(142)

and the terms of order _. are dropped. Substitution of

Eqs. (140), (141) and (142) into Eq. (138), followed by an

integration over angles, and over the center of mass velocity

yields

>

, _. _ v_,
(143)

with

(l_)

_ - - - (11_5)
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The argument_I N-_ of _J_-_] indicates that the sub-

set 2 of molecules contains one _ and 8 molecule. To obtain

Eq. (144), the fact that the average soft force acting on a

molecule of species sin the absence of perturbing forces is zero

is used.

The following identity may now be noted.

#

as _ _ (l.61

The variable _ which appears in Eq. (145) must be _a_ (°)

because the distribution function from which it came originally

was _f_) in Eq. (108). The following approximation is now

made,

_ __ - (147)

This approximation will be put on firmer ground later.

Eq. (144) may be simplified by using Eq. (147)

Thu s

(148)
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The hypothesis of molecular chaos is now introduced as

the assumption that a time _ exists which is sufficiently

short that the average change in relative displacement 6_(_)

is small (assumption (a) in the introduction) but nevertheless,

sufficiently long for <_(_)_[_)_ to reach the assymptotic

form_0<),__ thus allowing---_--the introduction of the generalized

pair diffusion tensor in Eq. (148). This diffusion tensor is

a function of the initial relative displacement of particle
C0_

with respect to _, i.e., _ This assumption may now be

stated as

(149)

Now, the definition of a diffusion coefficient requires

a time scale _ long compared to the correlation time of the

relative velocity la_ Equation (147) is therefore not

valid throughout the whole interval _ , but is valid for

times o < t <<'_" such that the relative velocity is highly

correlated with its initial value _(_ . During this latter

interval the molecular trajectories are approximately linear,

Equation (146) however is valid throughout the interval %_

Equation (149) is therefore approximate. The true equation

for _('W_L J should be based on Eq. (147); that is

(15o)
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If (151)

then,

(152)

The first integral in Eq. _5_i is precisely the approximation

that was used in obtaining Eq. (149). If the second integral

can be proved small compared to the first, then the approxi-

mation for _(_) given by Eq. (149) will be justified.

NOW,

_o5

(153)

Therefore, substitution of Eq. (153) into the second integral

in Eq. (152) yields

(154)

y']- <_),,_.co>)_c_'__'
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The subscripts _, and 6 on the brackets denote a fixed ensemble

average, that is, an average in which the initial positions and

momenta of particles _ and 6 are fixed. Thus while

can by means an approximate< be determined of

O_

bi_arate-probability distribution function for _(0) and _o.CNO

' _)U _(S') where _(SO iV the normalizedto be simply_-

relative velocity autocorrelation function (we assume that the

relative velocity is a stationary random process, and for

simplicity restrict our attention to the case where different

components of the relative velocity are uncorrelated; the

argument can be generalized, but is consistent with the assump-

tion of isotropy) and U is the unit tensor. The determination

of __(&)_(31)_ requires a knowledge of the tri-

variat--e distribution function for _&_($) , _(O) , and

_ (%0) The result is in general a function of _($)_

_(gl_ and _g_Sl_ for which Eq. (154) does not vanish.

For example, consider the case in which the relative velocity

is a gaussian random process. In this case it can be shown

that

(155)
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Substitution of Eq. (155) into Eq. (154) does not cause Eq.

(154) to vanish. However, if we average Eq. (155) over _gto)

we obtain,

< > '; u
(156)

Here the second bracket denotes this average over _ (o)

This average is in fact performed in Eq. (143). Substituting

these results into Eq. (154) it is found that

Since the relative velocity was assumed to be a stationary

random process, Eq. (157) can be shown to be zero.

Thus Eq. (149) is a good approximation, and may be

substituted into Eq. (144), yielding

(158)
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The dependence of _£_ ( _ _ on r\_ is very weak if 12)

varies very little where the rest of the integrand in Eq. (158)

is sharply peaked. This must be considered a model assumption.

Thus

(159)

whereupon Eq. (68) after integrating over _ becomes

Combining Eqs. (160), (136) and (ll3),it is found that

(161)
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which in the tracer limit becomes

(162)

This force on particle I is due to the perturbation which causes

the relative diffusion velocity t_,(g) and must be equal to

the force discussed in Eq. (107). We thus identify _ _,(d)

with _-I'l( _ ) and therefore find that the singlet diffusion

coefficient, which is _,_+_i

6_T f J v _v_)_o oR)cl3R

(163)

or

<_xvS_
g/<-F

(164)
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with_Vs_ the equilibrium average of _ 2VS• _ _ the soft

potential. There are a number of interesting consequences of

this equation.

In the absence of the soft potential Eq. (164) becomes

tl)

5. (165)

which is precisely the hard core friction coefficient first

obtained by Enskog from a solution of the Enskog equation.

Helfand, 41 0'Toole and Dahler 39 and Longuett,Higgins and Pople, 4_-

obtained this result by assuming that hard core molecules in a

dense fIuid are described by the Langevin stochastic equation

of motion. The method used here is superior to these methods

in that it is based on a much more satisfactory phenomenology.

If the potential contains no hard core, then Eq. (164)

becomes

S
_T

(166)

which is precisely the Rice-Kirkwood 38 result. Rice and Kirkwood

made the assumption that the pair diffusion tensor could be

taken as the sum of the singlet diffusion tensors, or in terms

of the coefficients themselves, that
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It is clear that the pair diffusion coefficient cannot have the

form indicated at short intermolecular distances since Eq. (167)

implies that the molecules move independently of each other. At

what intermolecular distance the deviations from Eq. (167)

become significant is unknown. It could well be that the approx-

imation made in taking __ out of the integral in Eq. (159)

is tantamount to Eq. (167). It then appears that Eq. (167) is

valid only in a dilute gas. The hypothesis that Eq. (167) holds

in the dense fluid is presently being tested by computer exper-

iments. These authors then find that, on insertion of Eq. (167)

into Eq. (166)

or using the well known Einstein relations

the very well known result j

(171)
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iS obtained.

When this procedure is carried out for Eq. (164) it is

found that

_c_ t_ + < v Vs> .
(172)

Thus

_. W____3< V _ _/_ > J (173)

An interesting feature of Eq. (173) is that it is quite dif-

ferent from what is usually assumed in the Rice-Allnatt theory.

There, + _ is a rigorous consequence of the: _ S

assumptions but it is assumed that _s_)- is independent of

, Here we find this to be untrue. We shall comment on

this in a later chapter.

Equation (173) may provide us with a method for eval-

uating the diffusion coefficient of a gas in the high temperature

llmit, for then Eq. (1167) is exact.

There is yet another possibility. In a separate anal-

ysis Rice 44 has obtained the relationships

44. S. A. Rice, Mol. Phys. _, 305 (1961).
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with c = velocity of sound. Thus if Eq. (174) is solved for

<_V_ and substituted into Eq. (166) it is found that

(175)

Rice used an acoustic continuum model, in which it was

assumed that the density fluctuations were propagated at the

velocity of sound in the fluid. This theory has recently

been tested, and it was concluded that the acoustic continuum

model does not adequately represent the data. The reason for

this probably resides in the fact that the propagation of a

density fluctuation depends upon the frequency of that fluc-

tuation, and the velocity c is therefore frequency dependent;

a fact which is not considered in the model. Perhaps a method

for circumventing this difficulty is to choose that c which

gives the correct experimental diffusion coefficient, and

then to use this in Eq. (175) to predict

The best alternative is to use the correct Eq. (166)

or (164)

-- 6 (166)

or

(164)
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Recently the isotope separation factor for liquid argon has

been measured. 18'19'20 From this data the quantity _ _aV_

may be found. This, together with diffusion measurements,

enables us to evaluate _ _ . Equation (164) must be

treated slightly differently.

Using the definition of<*_V_,

(176)

together with the Laplacian of a centrally symmetric potential

(177)

or more particularly the modified Lennard-Jones potential, it

is found that

(178)

(179)
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(i8o)

When Eq. (180) is substituted into Eq. (179) and the integra-

tion is carried out, it is found that

(181)

Combining Eqs. (181), (i78), and (i64), (i65), one finds

(182)

3. The Shear Tensor

In this section we confine our attention to the soft

force contribution to the stress tensor, and the subsequent

soft force contribution to the shear and bulk viscosities.

The soft contribution to the stress tensor may be written in

the following form
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,5 (t,-s)as JR a_,,

which becomes, after introducing the notation used in the

previous section:

(183)

with

.ad"-'yp("-'/
(184)

A_ in the preceding section, Eq. (139), the gradient of the

potential energy may be expanded in a Taylor series retaining

only the first two terms. This expansion together with the

distribution function given by Eq. (!34) is substituted into

Eq. (183), to give
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where

__
(186)

In the preceding section it was stated that _ was the

difference in mean velocities between molecules of species one

and two both at the point _I" This was true because terms of

order _ were neglected in Eq. (142). In the present treat-

ment it is unnecessary to distinguish between the two species,

but it is necessary to retain all terms of order ___ In

fact, it is precisely the velocity flow gradient which acts as



93

the force in the phenomenological law for the flux of momentum,

i.e., the Newtonian stress tensor. Therefore terms of order

_ in _, are retained,

u,.. LR,.')- u_ (R,) ..- _.(R,)- _, (_',) t- R,_.,W'_ (187)

The soft contribution to the hydrostatic pressure may

be separated from the soft contribution to the non-equilibrium

part of the stress tensor,

(188)

where _$_) is the soft force contribution to the hydro-

static pressure. Terms of order (_L) will be neglected.

As in Eq. (150) after integration over _I and _, we obtain

the result

= ÷ (189)
,,--- _ |"4.



A double gradient

following manner

may be expressed in the

(19o)

(191)

_ R2 x2 2with _ = _ and = + y + z2 +72 R= _z __,

(192)

Now

and
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thus_--_)- '---_

This proceedure when repeated for the other components yields

(193)

Substituting Eq. (193)into Eq. (191)yields

R

(194)

, p {@
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R

(195)

This is different from what Rice and Kirkwood found which was,

(196)

They apparently performed the angular integrations in Eq. (189),

and found that A contributes nothing to the integral. They

therefore paid no attention to this term. Using Eq. (195)

5
# J

,__vv _ ,_v_,,)_,_- (_,_) ÷--

v ra,)- v_a,)

(197)

Substituting Eq. (197) into Eq. (189) yields,
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G-vs
J

(198)

I

.t.n_v_ -'., ,
s ,,t • S / _"'] t_.) .

' Y'_")JJS(P,,O- F#, c#,,)_l_,,

ltl,i f_ t_')

4__fN_ jj[_R

t

,_ "VU. (Rn ,,

r.,,'_d°_ =_"> I_IFR -" ,
- - _'_'_ "'_ (199)

/

_v_ )+ _,L) _,_ . _ - v ca,)] _o_..)a'a.

The classical Newtonian stress tensor is (Eq. (81)),

Equation (199) may be transformed into a form similar to Eq. (81)

by writing RI2 , _R,_ , and _ in spherical polar

coordinates and integrating over the polar and azimuthal

angles. Identification of the coefficients then leads to
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(200)

It appears that A contributes nothing to the stress tensor.

Thus Rice and Kirkwood's result is correct.

2 #

rv " "Ril

(2Ol)

For the coefficients of shear and dialational viscosity. It

is important to note that in the transition from Eq. (189) to

Eq. (198) we have used the fact that for indistinguishable

molecules the term _z(_,]-_i(_] vanishes. When the molecules

are distinguishable, as in Section I, this term is not zero.

4. Thermal Conductivity

In this section we confine attention to the soft con-

tribution to the thermal conductivity. The intermolecular force

contribution to the heat flux in a dense fluid system was shown

by Irving and Kirkwood 31 to have the form
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(202)

To evaluate the heat flux in a manner similar to the reduction

of the stress tensor discussed in the last section• Eq. (202)

may be written, after symmetrizing wlth respect to 1 + 2,

where (C__-_) is the peculiar velocity of the center of mass of

the pair• i.e.• the peculiar velocity ar _I when another mole-

cule is present at £-2" In a non-lsothermal single component

system with no bulk matter flow, the distribution function

in pair space f(2) may be expanded in powers of the gradient
• J

of the temperature. Starting with Eq. (134) for f(2)
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(204)

and terminating the Taylor series after the term linear in the

gradient operator, it is readily found that

ca-,_

(205)

with

_--,- _,,..v,,,T,

so that the perturbed distribution function may be written as

..., (206)

" ) 7
where as before f_2) is the local equilibrium value of the pair

distribution function. Using the expansion (b) in the intro-

duction, (neglecting terms which vanish in the integration),.



I01

(207)

The right-hand side of Eq. (117) may be rearranged to

(208)

When Eqs. (206) and (208) are substituted into Eq. (203), the

vectors _12 and _g,_ are expressed in spherical coordinates,

and the polar and azimuthal angles are integrated, after which

the relative velocity is integrated, the following result is

obtained:

(209)

The coefficient of the thermal conductivity is related to the

heat flux by Fourier's law i.e.,
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(21o)

Comparing Eqs. (210) and (209)

(211)

If I is defined as

(212)

the Eq. (211) may be written as

\_ r le (213)

5. Approximate Representation of the Transport Coefficients

In this section we shall derive much more convenient

formulae for the soft force contribution to the shear viscosity

and the thermal conductivity.

We note that for the modified Lennard-Jones potential,
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the equation of state, and the internal energy of the fluid are

and

N KT

3

(215)

where P is the equilibrium hydrostatic pressure and E is the

internal energy. Comparing Eqs. (200), (201) and (213) with

Eqs. (214) and (215) it is easily seen that the integrands are

very similar in structure. Introducing the definitions:

(216)

(217)

the Eqs. (214) and (215) may be written as
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_T ,z
(218)

and

' 3
- _ ,_

(219)

respectively. L is the heat of vaporization of the fluid.

Solving Eqs. (218) and (219) for B6 and B12 yields

13,-- _T T-'- 3 f_° (_) - __L
(220)

(221)

From Eqs. (200) and (201) we find that

lokT (222)
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or in terms of

5

the thermodFnamlC variables

#oKT

_T

From _Eqs. (212) and (87) a similar _elationshlP may be

for the thermal conductiVitY

or, in terms of the thermodYnamiC variables,

obtained

(226)
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Taking the temperature derivative of I and substituting _nto

Eq. (213) yields

(228)

with _ the coefficient of thermal expansion and _ the heat

capacity at constant pressure of the liquid. We now proceed to

evaluate these quantities numerically for liquid argon.

4. Numerical Calculations

We have on several occasions remarked that the Rice-

Allnatt theory was in good agreement with the observed trans-

port coefficients. How meaningful is this statement? As is

well known, the available pair correlation functions of either

experimental or theoretical origin are very poor. In this

section we examine some of the consequences of the errors in

(2)(R) and V (R). Attention is focused on the coefficients
go

of thermal conductance and shear viscosity.

Let us first examine the accuracy with which the radial

distribution function and potential reproduce the equilibrium

internal energy and pressure of the liquid. It is well known

that the calculation of the pressure is inordinately sensitive

to the relative positions of the minimum of V(R) and the first
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maximum of go(2)(R),45,46 and that the internal energy is less

sensitive to error than is p. In Table 2 there are displayed

the theoretical and experimental 47 values of L (defined by Eq.

(215)) for the potential parameters _ = 171 x l0 -16

= 3.418 x 10 -8 cm, and the same radial distribution func-

tions used by Ikenberry and Rice In the theory of thermal con-

ductance. The agreement• while not spectacularly good• is

satisfactory. On the other hand• in Table 3 are displayed the

calculated pressures. These are seen to be in very poor agree-

ment with observation. The sensitivity of the calculated

pressure to a change in well depth• _ , with no change in G-

is easily seen by comparison of the third and fourth columns

of Table 3. The change in well depth from _/k = 123.8°K

l15°K is within the experimental uncertainty of theto g/k=

potential.

eters (

Indeed, it is found that no single set of param-

• _ ) adequately describes the temperature depend-

ence of the second virial coefficient. At the high temperature

end of the experimental data the set (6/_= 123.8 ° , 6- = 3.418 A)

fits, whereas at the low-temperature end the parameter set

( _/k = I15 ° , _ = 3.50 A) is required to effect a fit to the

data. This indicates that the Lennard-Jones potential is in-

adequate over the entire range and a different analytic form

45

46.

47.

M. Klein• Ph.D. Thesis• Department of Physics• University
of Maryland• 1962.

F. Buff, Ph. DI._Thesis, Department of Chemistry, California
Institute of Technology, 1949.

F. Dunn, Thermodynamic Functions of Gases (Butterworths

Scientific Publications, L. + d., London• 1956), Vol. 2.
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a more flexible form of the potential is needed. Is the dis-

crepancy between the calculated and observed pressures indica-

tive of gross errors which vitiate the meaningfulness of any

calculations of transport coefficients? We believe the answer

to this question is no. Consider, for example, an alteration

of the potential such as to make the pressure integral correct.

This may be done in a variety of ways since all that is needed

is a shift of the minimum of the potential relative to the first

maximum of g(2)(R). Arbitrarily, we choose to alter V(R) by

scaling the potential through introduction of a parameter c,

(2) (R).but we do not alter go The values of the parameter c

are entered in Table 3 from which it is seen that the small

shift in potential which is required, of the order of 1%-2%

is within the uncertainty in V(R). Although the procedure

adopted is arbitrary, we assert that it is a useful technique

for improving integrands which involve products of widely

varying functions, each of which is subject to uncertainty.

It is important to note that the shift required in V(R) is

very small. Since the shape of V(R) is not completely cor-

rect and the parameters are subject to uncertainties greater

than the shift required, we shall use the shifted potential

as a test function to examine the numerical stability of the

(229)

computed transport coefficients.
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Table 2

Theoretical and Experlmental_Internal Energies

for Liquid Ar -

T°(K) p(atm) L(calc) L(obs)

(J)

128 50 -5150 -3345

135.5 I00 -5136 -3474

185.5 500 -5074 -3456

We proceed by first noting that the use of the shifted

potential in Eq. (210) leads to only small changes in the com-

puted values of L. Consider now the computation of the thermal

conductivity. Ikenberry and Rice 14 have shown that _ depends

on the difference between V(R) and RV'(R). Introduction of the

shifted potential then, in effect, leads to the multiplication

of KJ by c, since the difference between V(R) and RV'(R)

causes cancellation of the effect of all but one of the powers

of c which enter from Eq. (139). The computed thermal conduct-

ance is, therefore, essentially unaffected by the shift of the

potential required to correct the pressure integral.

Consider now the computation of _r _ . Lowry, Rice

and Gray 15 have shown that in this case the integrand is of the

_3_)- _;_t_) and all the functions vary widely asform

R ranges from _ to _ Moreover, the function _2(R) is

determined from the solution of a differential equation, the
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(2)(R). We may therefore expectinput of which requires go

_ to be very sensitive to the relative positions of V(R),

go(2)(R), and _2(R). Detailed calculation shows that the

introduction of the scaled potential leads to 25% changes in

_ but only 5% changes in the total shear viscosity. For

example, at lO0 atm and 133.5°K, the raw potential leads to

_ = .1898 x lO -3 poise whereas the scaled potential leads

to ?_ = .2228 x lO -3 poise. Correspondingly, the total

computed shear viscosity changes from _ T = .701 x lO -3 poise

to _ T = .730 x lO -3 poise. It should be noted that the shear
viscosity is sensitive to g- in three ways: _-5 and g-6

appear in the equations, the hard-core contribution is quite

important, and the hard-core contribution is sensitive to

go(2)(_). In all, it appears that the shear viscosity is

much more sensitive to the potential and to go(2)(R) than is

the thermal conductance (compare pressure and internal energy).

Within the uncertainties of our knowledge of V(R) and the

(2)(R), it still appears that the computedinadequacy of go

viscosity is only variable by an order 25% within the range

of possible variation of g , m_" , and go(2)(_). Changes of

go(2)(_ ) cannot at present be investigated arithmetically

because of the unavailability of suitable theoretical or exper-

imental functions.

We conclude that the agreement between the Rice-Allnatt

theory and experiment is meaningful since the possible changes

in computed coefficients are bounded in a reasonable domain.

This conclusion is supported by the observation that agreement
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between theory and experiment exists in numerous cases of

independent calculation. The likelihood that all such independ-

ent calculations are spuriously correct seems small.

Table 3

Theoretical and Experimental Pressures
for Liquid Ar

p(calc) a
T°(K) p(obs) (atm) p(calc)b c

128

135.5

185.5

50 -306 -190 0.9819

lO0 -228 -112 0.9827

500 +284 +398 0.9887

a /k : 123.8°K

b /k : llS°K

For our calculations of the doublet friction coefficient

we shall use the values of <_ _ V>deduced from isotope separa-

tion data, rather than those computed with a theoretical radial

distribution function. To compute the shear viscosity and

thermal conductivity we must have values for the contact pair

correlation function and its temperature derivative. These

values are obtained from the Kirkwood integral equation. It is

found that the coefficients are not very sensitive to these

functions, so that our results are insensitive to the weaknesses

of the equilibrium theory. There is, however, one exception to
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The doublet friction coefficient calculated

• All cal-

this statement:

from Eq. (182) and tabulated in Table 4 as -6

culations are for Ar at 90°K, and 1 atm pressure•

When the slnglet friction coefficient _ (1) is computed

from Eq. (174) it is found to be approximately three times too

large, but when it is computed from Eq. (168) it is very close

to the observed value _ . Thus instead of using the

measured velocity of sound to compute the doublet diffusion

coefficient, in Eq. (175) we adopt the follwoing procedure.

A value of c which we will call c* is chosen such that Eq.

(174) gives the correct singlet friction coefficient• This

value of c is then used in Eq. (175) to find _ (2). The value

of S (2) found in this way is tabulated in Table 4 as SA gC )

The value of _ (2) found from Eq. (175) using the measured
g,)

value of c is tabulated in Table 4 as _g (C) , but is not

used in the computation of the transport coefficients. Eq.

(166) and Eq. (182) are used to compute the doublet friction

coefficient, and are tabulated in Table 4 as _ c (2) and

(2) respectively. To check the accuracy of the value

(2) the singlet friction coefficient is calculated
of _ E '

(1)by Eq. (172) and is tabulated in Table 4 as _

is about 20% too high. Thus we should not have too much con-

(2)
fidence in 5 E

The soft components of the shear viscosity and thermal

conductivity are then computed. These coefficients are tabu-

lated in Table 5 as "_ , _¢ "g_ _'t_ _' ' ' W_ '

_V_ , respectively. The superscript S denotes "soft
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component", and the subscripts A, C, and E are used to label

the doublet friction coefficient used in the computation.

These transport coefficients are then compared with the soft

contributions computed by means of the Rice-Allnatt equation

and agreement with this more exact theory is found to be

excellent.

The justification of the assumptions made here regarding

the existence of the pair diffusion tensor and its weak depend-

ence on _12" must await a more precise theory. Rahman, whose

work will be discussed in Chapter IV, is checking the validity

of these assumptions by performing a computer experiment.

Furthermore the validity of the expansion of the pair potential

is being checked. It might be pointed out that for a harmoni-

cally bound particle the expansion is exact, because the third

and higher order derivatives are identically zero. If A_NI2(S)

is small for times of order _ , then the higher powers of

AR_I2 would annihilate the higher derivatives. This, as has been

said, is being investigated by Rahman.

The agreement with the Rlce-Allnatt theory is indeed

surprising, because the model used is very simple. We believe

that the small step diffusion model is a simple intuitive model

which incorporates the physical features of a dense fluid.
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Table 4

The Singlet and Doublet Diffusion Coefficients

T

oK

P

atm g/cc cm__m_ cm_m_ erg_____sx lO -3
sec sec cm 2

ergs x 10 -3
om 2

90 1.3 1.374 8.196 ll,81 ll 25 10.96
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• Table 4--Continued

_obs (2)(o*)_c (2) 4(2 )

%. 93 0.64 14.8 5-0 5- 68 1.61 2.52 2.52 2.84

gm i010
X •

sec
All _ are in units of
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Shear Viscosity

Table 5
b:i

and Thermal Conductivity

Comparison Between Small Step Diffusion
Model and Rice-Allnatt Theory

.....I '' ,,,,,

Rice-Allnatt R C E

_K

_ob_

•031

.012

.282

-155

.926

1.256+
•921 •921 •863

I. 121

1.74+
1.401 1.401 1.343

2-39

•020

•017

.198

.822

1.410+
1.26 1.26 1.12

I. 057

1.495 1.495 1.355
1. 645+

2.96

aAll _ are in units of 10 -3 poise.

bAll_are in units of 10 -4 cal/deg cm sec.



CHAPTER III

THE IDEAL IONIC MELT

I. Introduction

From the experimental evidence accumulated in the past

decade it has become apparent that many of the properties of

ionic melts are similar to the corresponding properties of

dense fluids composed of molecules which interact with a short-

48
range intermolecular potential. This is an interesting

observation in view of the marked differences in behavior between

dilute solutions of electrolytes and dilute solutions of non-

electrolytes.49'50 It is therefore clear that the role of the

long-range Coulomb potential in determining the properties of

a dense fluid must be examined carefully.

The Coulomb potential differs from van der Waals type

potentials in three respects: (i) The range of the potential

50.

See, for example, Discussions Faraday Soc. 32, 1961.

H. S. Haned and B. B. Owen, The Physical Chemistry of
Electrolytic Solutions (Reinhold Publishing Corporation,

New York, 1959), 3rd ed.

J. H. Hildebrand and R. L. Scott, Solubility of Non-

Electrolytes (Reinhold Publishing Corporation, New York,
1949).

I17
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is infinite (that is,

i J

is a divergent integral); (ii) The Coulomb interaction, may be

either attractive or repulsive dependent only on the signs of

the pair of charges; (iii) The Coulomb potential is very much

greater in strength than ordinary van der Waals potentials. As

a consequence of characteristic (ii) and (iii), it is impossible

to have macroscopic deviations from electroneutrality. More-

over, the structural polarization in a fluid of p©siti_a and

negative charges implied by Conditions (ii) and (iii) is such

as to screen the Coulomb potential, decreasing the effective

range to the order of molecular dimensions. As a consequence

of this polarization and shielding, the divergence catastro-

phies implied in (i) are avoided.

By the term ideal ionic melt we mean a fluid which con-

sists of spherically s_mmetric ion_ interacting pairwise with a

potential consisting of a rigid impenetrable core, a short-

range van der Waals potential and the long-range interaction or

repulsion characteristic of the Coulomb potential. This fluid

contains oppositely charged ions of nearly equal size and with

identical electronic properties (except for the sign of the

charge. As remarked above the condition of strong local elec-

troneutrality leads to configurations in which a positive ion is
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51
on the average surrounded by negative ions and vice versa.

Thus the most likely hard-core encounters occur between oppo-

sltely charged ions. In the analysis of the properties of the

ideal ionic melt we go further and assume that the only role

of the Coulomb potential is to determine the local structure of

the melt, and thereby to determine the two-body dynamics. We

note that hard-core interactions between llke charged ions are

rendered unlikely by both structural and energetic considerations.

In a previous analysis of the ionic melt, Rice 52 has shown by

direct calculation that the Coulomb potential does not contribute

slgnlf{cantly to the transport properties of the melt. Rice

finds that the Coulombic contribution to the friction coefficient

for a typical ionic melt is of order 10 -12 to 10 -13 g/sec whereas

the observed friction coefficients are of order i0 -I0 g/sec;

It is therefore concluded that dissipation in these melts is the

result of the short range part of the intermolecular potential.

Another very simple argument can be given to make this statement

plausible. The approximate theory for the friction coefficient

given in the last chapter by Eqs. (168) and (175) may be used

equations involve the quantity _V> .here. Both of these

The Coulomb potential satisfies LaPlace's equation; therefore,

for the Coulomb potential <_(_)>_-_ O In this very

simple way we see that the Coulomb potential contributes nothing

to the friction coefficient, and thus very little to the

51. F. H. Stillinger, J. G. Kirkwood, and P. J. Wojtowicz,

J. Chem. Phys. 32, 1837 (1960).

52. S. A. Rice, Trans. Faraday Soc. 58, 499 (1962).
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transport coefficients. We therefore assert as a model assump-

tion that the Coulomb potential plays only the indirect role

cited in determining the transport properties of the ideal

ionic melt. We see later that this assumption allows us to

consider an ideal ionic melt to be a pseudo-two component system.

2. Transport Equation: Singlet Distribution Function

It is convenient to enumerate once again as a set of

specific assumptions the conditions which define the ideal

ionic melt.

(I) Oppositely charged ions are of nearly equal size

and have identical electronic properties (except for the sign

of the charge).

(2) Strict local electroneutrality requires that on the

average-a positive ion is surrounded by negative ions, and vice

versa. Thus the most likely hard-core collisions occur between

oppositely charged ions.

(3) The probability of a hard-core collision between

like ions is reduced by the Coulomb repulsion between them--

hence these collisions make a very small contribution to the

transport properties of a melt and are neglected in the following

analysis.

(4) The total pair potential is the sum of three terms:

a rlgld-core repulsion, a van der Waals type attraction and

repulsion, and a Coulomb attraction or repulsion modulated by

the polarization of the surrounding fluid.

(5) The Coulomb potential gives rise to a large cohesive
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energy and determines the local structure and thereby the two-

body dynamics in the fluid, but does not Contribute directly to

the transport of momentum or energy.

With the preceding assumptions, we have derived an

integr0-differential equation using the basic method of the Rice-

Allnatt theory of llquids. 9'10 We present the details of this

derivation in Appendlx._. The derivation proceeds by first

deducing Rice-Allnatt type equations for a general binary mixture

and then specializing these results to the case of the ideal

ionic melt. It is Assumption (3) which greatly simplifies the

structure of these equations. This condition, in fact, reduces

the problem from that of a binary mixture to that of a pseudo

two-component fluid. We present here only the resultsof the

derivation for the singlet distribution function. In the fol-

lowing sections we discuss the corresponding doublet equation.

The analysis displayed in the Appendix shows that the

slnglet distribution function of an ideal ionic melt satisfies

an equation identical in structure with that for a pure fluid.

There are two singlet equations which are identical except for

the identity of the particles to which they refer. For example,

for species _, _ (_) satisfies the equation

(230)
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with

D:_(A) , : (231a)

_:, [ ]- v.. ' P_.,÷ K:TVp_,
(231b)

(_31c)

(231d)

._,,1 Fc') )JI___ _ _ _-_
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In Eq. (231), _. (6"_4_) is the pair correlation func-

tion evaluated at the point of contact when the pair separation

is just the ion-core diameter

Assumptions (2) and (3) we may

b is the impact parameter and

_-_Ws (and therefore because of

take _= _-_q -- _-r_g --- _"

the azimu-,thalangle

specifying the binary rigid-core encounter, K a unit vector

along the line of centers at the point of closest approach, and

_, _ ___I !; _ as usual the position, momentum, and mass

of particle _i The equations as written neglect the pos-

sibility of a collision between llke ions and are therefore con-

sistent with Condition (3) cited above. The friction constants,

_j' ([i --_ ] are defined in terms of the autocorrelation

function of the soft part of the force, s _

]=V_= "_ WT 'lY "j .) , __
o+ _-S " -- -- _'r,)

(_,)
(232)
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andthe averaging is to be performed in a canonical ensemble

with the position of particle ml specified. The soft force

acting on a particle is then the sum of two terms, s_ •

the average total intermolecular soft force acting on a molecule

at _: when the average is performed over all other molecules

in a canonical ensemble, and _J , a force arising from the

- -._,departure of the relative pair distribution function, _t _)

from its equilibrium value.

The integro-differential equation for _'(_1 ) can be

solved by a variation method first proposed by Curtiss and

Hirschfelder. The solution is for

+- ____EI_L _ _ .....-.

:1I"_-'-:'re'l-- +

_-m.I "t"

(233)

• - )
. IZ

[ _/_c_

with _ the volume per particle d_ __ the reduced peculiar

velocity equal to ( e_/_KT)V_ [_, _ _ ]_ _ the mean veloc-

ity of the fluid, and _, the rigid-core collision cross

section which is equal to (_(T_)'_ . As usual, the

unit tensor is denoted by U. We assume that _. _) is

known from equilibrium studies.
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3. Mobility of Positive and Negative Ions
in an Ideal Ionic Melt

The transport equation that we have derived iuthe Appendix

and presented in Section 2 can be written in an extended form

suitable to the description of the ideal ionic melt in an elec-

tric field 2, where the field is taken to be in the z direction.

We find

E = E_ k (234)

? C,} F_IJ
__ ,

: T,., + (k. A".I (253)

There are two such equations: one for the cations and one for

anions. In a static electric field, after a sufficient time t

(t > momentum relaxation time of the melt) has passed,

Dt Dt
= o

We assume that because of strict electroneutrality, there are

no configurational gradients in (e,) Equation (6)

then assumes the form
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t_fl) _(,)

(236)

with

(237)

combining Eqs. (234) and (236) and assuming that __a7 is

nonzero by virtue of distortions induced by the external field,

we have

(238)

To first order in the perturbation, the mobility of the

positive ion may be calculated with the momentum distribution

of the negative ions taken as locally Maxwellian. Thus if we

are considering _j ions,

t_t*} -- CJ}

(239)
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After insertion of Eq. (239) into _g_ we find

in this approximation, so that

(24l)

It is convenient to define an operator _ by the relation

(2_2)

whereupon

(243)

Consider now the term _g

may be written in the form 54

• Curtiss 53 has shown that

C. F. Curtiss (private communication).

That this integral vanishes can be shown by using the
existence conditions for the solution of a Fredholm

integro-differential equation• The proof is obvious.
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which depends linearly on _3- and _ both

of which are identically zero for the case under study.

The last term we must examine is the Fokker-Planck

contribution. We define the operator 7, as follows:

_,) \-_, _,)
(245)

Now,

-_(q ]
(246)

whereupon

"_h) \-I KT
(247)

Equation (238) when written in terms of these operators assumes

the form
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(248)

4-

The inner product of two functions _C_, )

may be defined by the relation

and _2_C._,)

(249)

it must be remembered thatwhere

densities of _ and 8, respectively.

It can be shown that

and are the number

(%_,¢) : (%T,v)
(250)

and that

c'%I._¢>_o (251)
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It is also obvious from the definitions of

, and the inner product that

and

I !
(252)

From this point onward we call

Eq. (248) is multiplied by-_(Cgl)d_,

results the relation

D- If

and integrated, there

a%.,

(253)

rn_. j

Integrating the left-hand side of this equation by parts gives

where an average is defined as

(254)

t 3"" 7 c,)
(255)
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The integrals on the right-han d side of Eq. (253) may be mani-

pulated using Eqs. (249)--(252). Thus

and so forth.

[F_'l

--.If _,,)re,o_,
f_<re>

It is found that

(256)

j'_:o"b_¢ T,& _,'c,.,:f_<T,¢>,
(257)

whereby Eq. (253) simplifies to

-, (b), .<_>

The Kihara functions, 55

(258)

55. T. Kihara, Rev. Mod. Phys. 2..5, 844 (1953).
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(259)

where the _ ( _

that

are Legendre polynomials and the

are Sonine polynomials, have the property

The Kihara functions are therefore seen to be eigenfunctions of

the Fokker-Planck operator with eigenvalues krlg) = - (_ +_).

They are not, however, eigenfunctions of the collision operator

_r)

J. J is, however, spherically symmetric and T_ can be

expanded in the form

where
(261)

':l-i_<"! ]t W,,<'j <'-))

From the recursion relations of the Sonine and Legendre poly-

nomials, it can be shown that
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Now, if

, .,, i _r) _'r-,)

in Eq. (258) we take

(262)

(263)

which can be solved by iteration.

by (Q_)(:ZKT/nt_)"z and (262)

Indeed, if (263) is multiplied

employed, it is found that

_ _°_)/%

(264)

Introducing a reduced field strength,

(265)
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in (260), Eq. (264) becomes
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as in (261) and _ _t_) as

We assume as a first step that the off-diagonal elements

d_rs (_) are zero, because they vanish when _- is written for

Maxwell molecules. We will denote the first approximation by

_Z . In this approximation, Eq. (266) becomes

(266)

(267)

_ "Z ,

Using the identity _+I ----(_ and choosing Q.=l

one finds for r = 0

f ,, ,l,o) (268)
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(269)

But _co)= _ r°_/IKT ),f_ and k_.c°)- / so that

Before evaluating _,

approximation to _

we write down the general nth-order

for those who are interested in satura-

tion effects.

The second approximation to Eq. (266) can be obtained by

inserting the first approximation, _W m & into the off-

diagonal term. This leads to the equation

(271)

The notation _ _'_)_

determine 4_'r1>

indicates the use of Eq.

Consider the definition

(267) to
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(272)

so that Eq. (267) can be rewritten in the form

(273)

Proceeding further, Kihara 55 has shown that

(274)

with the definitions

(275a)

o

_,,r(- v') jv,
(275b)
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(275d)

In the case under consideration Is proportional

to g, because in a hard-sphere collision _C3, _ is a func-

tion of e only. Thus it is possible to define a temperature-

independent cross section (_) as

O_ (_")-- T-'/_" (r), (276)

Now using Eq. (276) and the relation

(277)

it is found that
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-)Consider now the term (_i which is, by definition,

where

_'(2.11 )

(279)

(28o)

where _- --_ . The natural reference point for the calculation

of _-_ is the point _ , since the distribution of

matter about this point is being considered. The pair distri-

ct)
bution function, _ refers to two points in space with the

nominal external potentials ¢ (_, J and ¢ ( _ ) ,

and the distortion in the distribution function arises solely

from the non-vanishing potential gradient. Thus the Taylor
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(281)

leads to

(282)

- cz)

= f. % r&..,,)_f(-_ %.., %,)_g_,))

where % is the number density of p particles at __,

at which there is an external potential _(_i) ; i.e.,

for all attainable laboratory fields, the last exponential

in Eq. (282) may be expanded and only linear terms in

retained

(283)

:D _oC_,,<,.,),_,_,<<E.r_,.=,
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Substitution of Eq. (283) into Eq. (279) leads to

We notice that

= (b

(285)

because the canonical average of the intermolecular force is

zero. Therefore

(286)

and from Eq. (270), we have, after using Eq. (234)

[_ - t,)
C_"_-_'_ I

(287)
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++') _Q))Kihara has shown that C_oo¢') = --_+'_ (_, + _" _,w

and Davis, Rice, and Meyer ll have evaluated this integral.

Using their result in Eq. (187) we find

7o.

: ;::+ +,:..+-s:L'
(288)

where

_C

3

This identification of

II. Finally,

is given by Eq. (136) of Chapter

(289)

and we predict a deviation from the Nernst Einstein relation.

It is interesting to note that if one chooses as the

external force _f, _(g, ) , and assumes that _=
O

then this procedure may be repeated to givej after Eq. (16) of



the previous chapter is used,
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is the total friction coefficient.where

the Rice-Allnatt equation implies this simple sum.

This shows that

4. Coefficients of Shear Viscosity
and Thermal Conductance

Bearman and Kirkwood 56 have derived representations of

the stress tensor and flux of energy in a binary mixture in terms

of the intermolecular potential and the relevant distribution

functions. These expressions are basic to the discussion of

the special case of the ideal ionic melt considered herein.

According to Bearman and Kirkwood, the total stress

tensor may be written as the sum of two contributions: a

kinetic contribution, _ , which arises from translational

motion of the particles in the mixture, and a potential energy

contribution, _ , which arises from the work necessary

to move one particle while it is in the force field of a

second particle,

__ ---- 0-'_K -I- (_.r" (290)

These contributions may be further decomposed into parts

originating from the several components of the mixture. Thus

56. R. J. Bearman and J. G. Kirkwood, J. Chem. Phys. 28, 136
(1958).
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N_ ja)

and

--- _=-ot _ _ _:_.
aV' Cr,,r';ol r"air"

(292)

where

(293)

We may evaluate the kinetic contributions immediately:

(294)
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using ) C_)

is found that

and _?')

(295)

-,_ __/±c_,_d_o,,

as given in Eq. (4), it

%

where

(296)

To evaluate the kinetic component of the shear viscosity,

the kinetic stress tensor (296) is compared with the Newtonian

stress tensor,
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(298)

whereupon one easily finds the relation

I_

(299)

The kinetic contribution to the heat flux may be com-

puted analogously. Bearman and Kirkwood show that the heat

flux is of the form

(3oo)

• . _(,'t) - _ ix -u a'r,,,

Performing the indicated integrations,and comparing the result

with the phenomenological linear law

(301)
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it is found that

67<''"_ _p" <1.a-,_) m'_
- -,_ + _" (_+.e,,:)/,,_,,D I.<" ,

(302)

Consider now the intermolecular force contributions

to the shear viscosity and thermal conductivity. Because of

Assumptions (3) and (4) no hard-core collisions are permitted

between like molecules, and only cross component contributions

to the thermal conductivity and viscosity need be considered.

For rigid-core encounters, it may be shown that

= _t_ _ _ ._ (303)

where

(304)
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and

(305)

As in the theory of the dense rigid-sphere fluid

approximated by the following product:

, is

.: (_.) J-(_') (306)

Thus the integral to be evaluated is

(307)

The quadratures required in Eq. (307) may be performed using

well-known methods. The results, when compared to the Newtonlan

stress tensor, leads to the viscosity contribution

(308)
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with

c,)
KT) _c_-) .

5-[''

4.-

(309)

li.) (310)

Similarly, Bearman and Klrkwood give the heat flux due to the

intermolecular force in the form

(311)

_ I_-)

where _ (_i_r) is the average number density of mole-

cules of type n at r I and m at r in the configuration space of

c_i is the particleordered pairs of molecules, and ._
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current density in pair space (6 dimensions).

With Assumptions (3) and (4), Eq. (309) is reduced to

This is precisely the result of Irving and Kirkwood, and we may

proceed in our analysis exactly as have Rice, Kirkwood, Ross and

Zwanzig. After carrying through all the integrations, it is

found that

..(d _ I._.)

(3_3)

with

.(,] . --_ j.j_ ( s-_ 3- 7X -
L

,]

)[ .- ----
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C_-;

(315)

There now remains only the computation of the soft short range

potential contribution to the energy flux and momentum flux.

In the Bearman-Kirkwood formalism, the soft-force contribution

to the shear tensor is

(316)

Consider now the implications of the assumptions defining an

ideal ionic melt. In Assumption (5) we have stated that the

short-range soft forces are much more important than the Coulomb

potential in transport phenomena. Rice has shown that the

Coulombic contribution to the molecular friction coefficient is

negligibly small. Thus in the soft-force contribution to the

stress tensor and heat flux, we consider the soft short-range

forces to be the only important soft forces. These forces have

a range which is less than two molecular diameters. It is
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therefore consistent to remark that only nearest-neighbor

soft-force interactions are important. But from Assumption

(3) anion is surrounded by ions of opposite charge. Equation

(312) therefore reduces to

(317)

We refer the reader to the paper by Lowry and Rice for

the details of the calculation of the soft contribution to the

shear viscosity.

The same procedure may be followed in evaluating the

sofr contribution to the thermal conductivity. The heat flux

is also given by Eq. (8) but now for _ _ _ . We refer the

reader to the paper of Ikenberry and Rice for the details of

the calculation of the thermal conductivity.

As a result of applying the procedures detailed by

Ikenberry, and Rice and Lowry and Rice, the following contri-

butions to the thermal conductance and shear viscosity are

obtained:

(319)
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_7" "4 (321)

Of course, the total thermal conductance and shear viscosity

have the respective forms

(323)
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5. Discussion

It can be seen from the preceding analysis that the

properties of a molten salt should be very mcuh like the prop-

erties of a simple dense fluid. Detailed calculation must

await the determination of accurate pair correlation functions

and non-Coulombic contributions to the interionic pair potential.

However one property unique to the molten salt, its electrical

conductivity, deserves some further attention here even though

calcuIations are hindered by lack of adequate input information.

In Eq. (289) we have displayed a relationship between

the mobility of a charge carrier and the interaction potential.

There is predicted to be a deviation from the Nernst-Einstein

relations due to the distortion from spherical symmetry of the

surroundings of a selected ion. Because of this distortion

there is an internal electric field exerted on the selected ion

which is opposed (antiparallel) to the external field. Since

the net field exerted on an ion is less than the applied field,

the diffusion mobility is expected to exceed the conductance

mobility. This effect has been observed many times but no

adequate interpretation has heretofore been advanced. The most

common model assumes ion pairing such that the neutral pairs con-

tribute to diffusion but not to electrical conductance. We shall

see that such an assumption is unnecessary.

From Eq. (289) the deviation term is found to be
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af_er_integration over the angles of a spherical coordinate

system with z chosen to be the polar axis. It will be noted

that the integral in A is identical to the integral defining

the pressure in a simple fluid Eq. (_0W) and the calculation

is therefore very sensitive to the relative positions of the

minimum of V and the first peak of _, CR) Calculation
v

of A requires that V and go (2) be known. To estimate the mag-

A we assume that go(_)is-' the same as that for liquidnitude of

Ar at the same number density, 57 and that the potential is of a

depth determined by the ionization potentials and polarizabil-

ities of the ions but scaled to the depth of the Ar-Ar poten-

tial. This procedure leads to _ = 96 x 10 -16 ergs compared

to _ = 171 x 10 -16 ergs. While these approximations are

admittedly crude, no better potentials or radial distribution

functions are currently available. In the simplest estimate

we put gol _ = I for all _ _t l , and go (2) = 0 for

K
-_ _ I This leads to A = 0.48 at llO0°K for KCI using

the 6-12 potential with parameters _ = 96 x l0 -16 ergs and

57. By the same density is meant a density corresponding to
the Kirkwood parameter = 20, in the Kirkwood solution

of the Born-Green integro-differential equation.
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_ 3.14 x 10 -8 cm. This is certainly a crude value of A

because go (2) rises appreciably above unity in the first peak

and it is Just this region of the integrand that contributes

heavily to A. However, because of the opposite signs of the

attractive and repulsive forces, it is not clear whether or not

this value of A is large or small. For a better but still crude

calculation we use the function go (2) relevant to liquid Ar at

the constant density 1.68 x lO 22 cm -3 and for several different

temperatures and pressures. 58 This integration leads to

A _ 0.28-0.30 a value sensibly independent of the variations in

go (2) over the range studied. For Ar, these variations cor-

respond to the temperatures 128 °, 133.5 ° and 185.5°K with pres-

sures Of 50, lO0, and 500 atm, all at the constant density cited.

The predicted deviations from the Nernst-Einstein

relation are of the order of 10% to 40%, a range which is in

agreement with the experimental date presently available. (See

Table 6 ). Clearly, the calculation of a precise value of A

will require much more accurate pair potentials and pair cor-

relation functions than have been used in this crude computation.

Nevertheless, the order of magnitude agreement strongly suggests

that no ion pairing need be invoked in the description of

simple molten salts far from the critical temperature.

58. In our computation, the value of the integral was found

from the equation of state of liquid argon at the tempera-

tures reported and does not contain the errors of the

Kirkwood theory of the pair correlation function.
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Table 6

Experimental Deviations from Nernst-Einstein
Relation in Molten Salts

Diffusion coefficient

x 10 4 cm2/sec

Salt Temperature From Ion From Tracer

oK Mobility Differential -A

NaCl

RbCI

CsCI

Nal

IIII 1.39 1.63 0.17

1250 1.82 2.47 0.36

lOlO 0.75 0.88 0.17

1163 0.17 1.46 0.24

943 0.60 0.73 o.21

lO63 0.93 1.15 0.23

943 1.o5 1.13 0.08

1067 1.44 1.47 0.014

The characteristic simplifying features of the ideal

ionic melt studied in this chapter have also been recognized and

successfully exploited in several recent theoretical studies of

molten salts. On the basis of an earlier calculation it has

been asserted that the Coulomb potential plays no role in dis-

sipation of momentum and energy except that of determining the

local structure of the liquid. Recent calculations of the
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thermodynamic properties of salt mixtures 59 and of pure salts

indicate that the compressibility 60 and equation of state 61 of

an ionic melt are well represented in terms of a hard-sphere

fluid model. Again, the only role of the long-range Coulomb

potential is to determine the density and local structure of

the liquid. Indeed, it appears that many of the properties of

ordinary liquids are well approximated by a model in which the

attractive forces determine the volume of the liquid, but all

dynamic properties are determined by hare-core encounters.

This suggests that the statistical geometry of the rigid-sphere

fluid is very similar to that of a real liquid, an idea exploited

by Reiss and co-workers.62 We believe this to be a very good

approximation for many (but not all) of the properties of an

ionic fluid.

It is important to examine the range in which the theory

presented here may be expected to be valid. It is well known

that when alkali halide melts or other ionic melts vaporize,

the gaseous state is composed of molecules not ions. Thus, as

the density of the fluid is lowered there must be a transition

from a fluid of ions to a fluid of molecules, i.e., extensive

ion pairing and molecule formation must occur. For this reason

the theory of ideal ionic melts, which is based on a reference

59.

60.

61.

62.

H. Reiss, J. L. Katz, and 0. J. Kleppa, J. Chem. Phys. 36
144 (1962). --'

F. H. Stillinger, J. Chem. Phys. 3_55, 1581 (1961).

D. A. McQuarrie, J. ehys. Chem. 66, 1508 (1961).

H. Reiss and J. Mayer, J. Chem. Phys. 3__4, 2001 (1961).
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state in which all particles are ions, will be valid at hlgh

densities and for temperatures far from the critical temperature.

A complete theory, which of necessity would include the possi-

bility of molecule formation, would not need different forces

since the alkali halide molecules are known to be "ionic". How-

ever, to develop such a theory the phase space of the system

would have to include those regions corresponding to bound

states. It is difficult to make a precise description of this

phase space, and those descriptions which have been given 63

are awkward to work with. For the present it seems best to

examine the properties of molten salts far from the critical

polnt _ith the intent of testing in detail the extent theory.

From such studies may come the clues needed for definitive

extension of the theory of the lower density region of the

fluid range.

63. T. L. Hill, Statistical Mechanics (McGraw-Hill Book
Company, Inc., New York, 195b).



CHAPTER IV

A NON-MARKOVIAN THEORY FOR MOMENTUM RELAXATION

I. Introduction

Recently, Rahman 65 has performed some very interesting

computer calculations. He studied the classical equations of

motion of 864 argon atoms interacting with a Lennard-Jones

potential, to simulate molecular dynamics in liquid argon at

94.4°K and a density of 1.374 gm/cm 3. The basic assumptions

made are that a) classical mechanics is valid and b) argon

atoms interact through a two body central force. Further

assumptions have to be made to make the calculation possible.

The two body potential has to be truncated beyond a certain

range, the number of particles in the assembly has to be kept

small, and suitable boundary conditions must be imposed.

Finally, the classical equations of motion are written as a set

_f difference equations, thus involving a finite increment of

time for the transition from one set of positions and veloc-

ities to another set. These difference equations are then

solved on a CDC 3600.

Rahman computes the space time self-correlation functio_

the velocity autocorrelation function, and the spectrum

65. A. Rahman, private communication.

!59
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associated with this autocorrelation function among other

things. Although his original goal was to study the Van Hove

space time correlation functions and thereby to predict the way

in which slow neutrons would be inelastically scattered from

the liquid, Rahman has actually performed an "experiment" and

we-shall regard his calculations as raw data which require

theoretical explanation.

In recent years great progress has been made in the

development of a general statistical mechanics of irreversible

processes. The work of Van Hove 66-68 and Prigogine and co-

workers 1'2 stands in the forefront of these efforts. The

formalism developed has been successfully used to derive the

well known kinetic equations, such as the Boltzmann equation

and the Fokker-Planck equation. All of these derivations are

carried out for dilute or weakly coupled systemsand, to date,

no kinetic equations for dense or strongly coupled systems have

been derived by these methods. There have been some attempts

to derive the Rice-Allnatt equation on the basis of these

methods, but nobody has succeeded. Furthermore, although the

theory is exact within the limits of perturbation theory and

provides a method for deriving non-Markovian equations, there

has been very little activity in this area. To understand,

and explain such properties of dense fluids, as the velocity

66.

67.

68.

L. Van Hove, Physica 21, 512 (1955).

L. Van Hove, Physica 22, 343 (1956).

L. Van Hove, Physica 23, 441 (1957).



and force autocorrelation functions, a realistic non-Markovian

kinetic equation for dense strongly coupled systems is abso-

lutely necessary. Because Prigogine's analysis is based on a

perturbation solution of the Liouville equation in which the

free particle states are chosen as the basis set, it seems

reasonable to doubt that such a realistic equation will be

found. If the Liouville equation could be solved for a more

realistic system; that is, a system which contains some of

the features of the dense fluid, there might be some hope for

obtaining the much needed non-Markovian equation. Thus, due

to the lack of information the scientist interested in the

statistical features of simple dense fluids must adopt methods

which are questionable from the point of view of rigor. To

be rigorous is indeed desirable, but for the present problem

impossible. The work presented in this chapter is therefore

based on an ansatz, the validity of which will be tested on

the basis of whether or not it provides agreement with the

computer experiment of Rahman.

Recently Zwanzig 69 has derived the autocorrelation

formulae for transport coefficients. The first part of his

paper was devoted to a derivation of these formulae based on

Nakajima 8the classical work of Kubo, Yokata, and in which

linear regression of fluctuations is assumed. In addition,

these authors regard the fluctuating variables as a multi-

dimensional Markov random process. It is well known that this

69. R. Zwanzig, J. Chem. Phys. 40, 2527 (1964).
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derivation leads to a contradiction which may be simply stated;

the aUtocorrelation function of a random variable at t = 0 is

equal to its first derivative with respect to time at t = 0.

The function at t = 0 is nonzero, whereas its derivative at

t = 0 is zero. Hence, the contradiction. Zwanzig makes the

assumption of linear regression but does not find it necessary

to make the Markovian assumption. By introducing a parameter

of slowness _ in such a way that as _--_o the product _@

is held fixed, that is in such a way that as _-_o _-v_ I

Zwanzig obtains the Markovlan equation for the regression of

fluctuations as well as the Kubo formula. He then concludes

that for short times the non-Markovian nature of the molecular

process cannot be ignored, but for long times these effects

become less important. The contradiction mentioned above

therefore does not appear in Zwanzlg's derivation, because

according to him it is absurd to think that a Markovian equation

holds for short times. To illustrate his method, Zwanzig derives

Kirkwood's formula for the friction coefficient, a very inter-

esting result indeed.

Starting with 0nsager's pioneering work, 70'71 almost

all transport theories have been based on Markovlan assumption_72

In the context of the work to be outlined here these assump-

tions may be states: the autocorrelation function of the

70.

71.

72.

L. 0nsager, Phys. Rev. 4__O0, 405 (1931).

L. Onsager, Phys. Rev. 3___7,2265 (1931).

S.R. DeGroot and P. Mazur, Non-Equilibrium Thermodynamics

(North-Holland Publishing Company, Amsterdam, 1962).
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momentum should decay to zero long before a molecule can be

said to have moved a macroscopic distance. Of course in this

time neighboring molecules cannot move a macroscopic distance,

and the local density should remain fairly constant. This

assumption, it may be pointed out, makes behavior in momentum

space independent of behavior in _configurationJ space, that is,

it decouples momentum and configuration space. What happens if

the density fluctuates while the momentum correlation function

is decaying? That is, what if hydrodynamic times are of the

same order of magnitude as the time scale on which molecular

processes such as momentum relaxation take place? This 'is a

question which is ignored by use of the Markovian assumption.

By introducing a parameter of slowness _ , and by

letting _--_o , Zwanzig essentially forces the density

to remain constant while the momentum is relaxing. It is thus

no surprise that he obtains a Markovian result. As we have said,

letting _--7o is tantamount to letting _ --7_ Thus for

long time behavior the decay of the momentum should be Markovian.

This can be said more clearly in the following way. For long

time behavior the decay of a Fourier component of the density

may be found from the space Fourier transform of the diffusion

equation,

_ : _ Rz_ .
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The diffusion equation describes the asymptotic time evolution

of the Fourier components of the density. The individual

Fourier components of the density decay at different rates

depending upon the wavelength of the inhomogeneity or density

fluctuation _-- . In any case the rate of change of the

Fourier components decreases with time; that is as @ _

_-_ --_ O Thus for long periods of time a particle on

the average sees and feels a fairly constant background, a

background with density changing very slowly in time. For

small k, or large wavelength, fluctuations in the density,

_--_O quite slowly, and these do notinhomogeneities

have a very important effect on the decay of momentum. The most

important contributions to non-Markovian behavior of the momentum

come from the short wavelength or large k density fluctuations,

because these correspond to rapid processes.

The ansatz used in this work is that the memory the

random variable has for its previous value is exponential;

that is, the closer to the previous value it is in time, the

better is its memory of that variable. This will be made more

meaningful later.

2. Formulation of the Problem

Most discusslonsof fluctuations begin by assuming the

regression of fluctuations. This assumption may be stated simply

in the following way. Spontaneous fluctuations from thermal

equilibrium obey macroscopic transport laws. As we have said,

Markovian behavior is also assumed, by which we mean that the
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correlation time of a macroscopic random variable C_(t)

is much greater than that of its time derivative OCI_)

The macroscopic random variables of interest here are a

This set may be denoted by a vector .__(%) where it is under-

the n-tuple of numbers _OL_t)_ are the componentsstood that

of this vector. Macroscopic transport laws describe the evolu-

tion in time of _(_) , where _[_) denotes the average

of C_(t) in repeated experiments all performed in such a

way that C_(O) is the same. This is a fixed ensemble

average where by fixed we mean that all of the members of the

ensemble are chosen in such a way that at t = 0 they all have

the same value (_[(0) . The random variables are chosen

as deviations in properties from their thermal equilibrium

values. Such a property would be the average momentum of a

particle at time t given that its initial momentum at time zero

was _ CO) . Obviously this quantity is a deviation,

because its thermal equilibrium value is zero.

In the Markovian form, the linear regression laws may

be written as

cat '
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Here the coefficients Kij are independent of time. Zwanzig

shows that Eq. (325) is a limiting form of the much more gen-

eral non-Markovian equation

dk

t

-_ (326)

The "ansatz" mentioned in the introduction and used throughout

this chapter is that

-c_'t

(327)

We shall see later that any two parameter Kij(t I)

which reduces to Eq. (325) in the Markovian limit.

example

can be chosen

Thus for

[4q (,,) e_-c,,.j,t• = co-_ "Aj f:, (328)

or

(329)
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might have been chosen but the analysis would have been far too

difficult. Equation (327) was chosen originally for the fol-

lowing reason. If t-t I > _ where _ is the time over which

the random variables corresponding to the density fluctuations

interfered with the decay of the momentum in our example in the

introduction, then _ L_ - _a ) rk_ _j (_) and the integration

may be extended to infinity. Thus Eq. (326) becomes

O[_ J =, (330)

This is the Markovian limit of Eq. (326) and in order that

Eq. (325) be retrieved it is necessary that

W j : Kcj. (331)

It is immediately observed that the particular ansatz made in

this work, that is Eq. (327) automatically satisfies this con-

dition. Equations (328) and (329) may be forced to do so also.

We can show this by a method very similar to the manner in

which Zwanzig obtains the Markovian autocorrelation function

formula, i.e., by introducing the parameter of slowness _.

This shall be discussed in relation to the particular problem

of the velocity correlation function.

In going from Eq. (326) to Eq. (325) via equations (330)
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and (331), an approximation has been made. This can be best

illustrated by using an equation for one random variable instead

of n. Equation (326) may be written for this situation as

t

(332)

The ansatz we shall use is that

(333)

The Laplace transform (t,) is introduced.

The inverse transform is

- e..st'  (s)j
-Loo

(335)

where c denotes the point at which the Bromwich contour should

be constructed.

Substituting the ansatz of Eq. (333) into Eq. (334)

yields
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I

ocK
(336)

Equation (336) can now be used to verify the following results

_K(s)
c_S S--o

I

(337)

(o)- L Re.sK (-o:) = o_ (338)

where RCS K(-C_) denotes the residue of _(_ ] at its

single pole -_. Substituting Eq. (336) into Eq. (335) it is

found that

(339)

'-:- R_.sK(-_),(::x.
(340)
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t.7Q

Similarly it is found that

1=- Pi(s)
S=O

(342)

The identity

-- _- t_ = d_ "_P_-
dot _

0

may easily be verified.

oo

and

Thus

E ]'-

C_ _rl.4"1

_ _, ,1- I

n.I

(343)
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Equation (332) may also be written

d&(e)_
_t

- [o_t,K (_:-t,)_.(.t,), (344)

may be expanded around t. Let r_= t-_l , then

_-cY:)- (-I _-! _,, &ct). (345)

Substituting this into Eq. (344), and changing variables in

the integral, it is found that

I_ t'_ ol'_oY.(t)
(346)

For t > > a. , the limit of this integral may be extended

to infinity. Thus using Eq. (343) yields

(347)
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We have stated what is meant by the Markovian assumption in the

first part of this chapter. There we said that the temporal

variation of '=_(t) is assumed to be much smaller than

that of _(t) . Thus we may neglect all terms with _ > I in

this expansion. As we shall see later, _ is of the same order
rkA

as _ (O) , and we are therefore justified in assuming that

_(O)/ (_Ofor /I 7 I • Equation (347) becomes, after

all these considerations are introduced,

w

-
K (o___)

m

cbl"

(348)

Rearranging these terms yields

(349)

or

_ 1 -|obf _ " (350)

This is the Markovian equation that we have sought.

comparison with Eq. (325)

Thus by
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'- - . (351)

If Eq. (348) is iterated, the result is

(352)

By comparison with Eq.

_ _.1-1

/-((o) I< (353)

is obtained. We can simply illustrate Zwanzig's method for

obtaining a Markovian equation from our non-Markovian equation

(332) using the ansatz of Eq. (333). A parameter of slowness

is introduced thatsuch

5. ct ) : b _-)

(354)

when _ -, o j _ is kept fixed, and thus _-,_ .

Markovian equation

In the
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a_ct)_ _ K_tt )
_-. - ,,

we notice that if K is made smaller the process becomes much

Thus, replacing K by _ , and taking the limitslower.

_-_0 is tantamount to making the slow toprocess or

observing the long time behavior of the equation. Substituting

our ansatz, Eq. (333), into Eq. (332) we have

(355)

Now from the Laplace convolution theorem (the Laplace

transform _(_) of the integral

t

0

(see Eq.

be

is the product of the Laplace transforms of the functions:

(334))), the Laplace transform of Eq. (355) is found to
J

l

S_(s)-_c(o):- otK Z.{s), (356)
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yields

o_(s) : .
S÷ _._" (357)

The inverse transform of Eq. (357) yields

Ids st c_(o)

c-coo OL_-_ (358)

Introducing the parameter of slowness _j

Eq. (358) becomes

and

(359)

Taking the limit of Eq. (359) as --.-.-_o gives

C ,I.- L_

(360)

/

is a simple pole at _ -:- -_m"There

residue theorem it is found that

Thus by using the
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Now

1
- K_"'C' _

e_, , _(o)

: _ , and Eq. (361) becomes

bc_) e_-K_'t" -=

(361)

(362)

This is precisely the result one gets from the Markovian equa-

tions if K = K'. Thus in the limit _-_ O , the non-Markovian

equation gives the correct Markovian limit. This completes

our discussion of the general formulation of the non-Markovian

regression of fluctuations.

3. The Momentum Autocorrelation Function

In this section the theory developed in the last

section shall be applied to the problem of the momentum cor-

relation function.

The transport equation for momentum relaxation is

dt
(363)

In this equation <p, (t) _ is the average momentum of

particle I at time t given that the initial momentum was _ [0)_

and # is the friction coefficient. Multiplying this equation

by _ (o) , and averaging over the equilibrium distribution of
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<-e,co).e, ct)> -

<_t0)' _(4)> Is the momentum autocorrelation function.

We may divide this equation by < _ (O)';which is 3mK'_ (from

equipartitlon of energy) to normalize the correlation function.

The normalized correlation function _lt) is therefore described

by _he following equation

ou
(365)

with the boundary condition _0) = I.

Equation (365) is a Markovian equation. The procedure

outlined in the last section may be applied to this equation,

if K is identified with _. The non-Markovian equation cor-

responding to Eq. (332) and (333) of the previous section is

oU- (3.66)

The Laplace transform of this equation is found by using the

convolution theorem_
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(367)

with

K(s) - ---
ct+S (368)

If the procedure adopted in deriving Eq. (331) were used,

(369)

On the other hand, if Eq. (351) is used then

-I

(370)

of _.

There is yet a third relation for

From Eq. (353) it is found that

G.o _t-I

oC '_-

and C_ in terms

(371)

Of course _ is related to the diffusion coefficient through

the Einstein relation,

(372)
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Substituting Eq. (368) into Eq. (367) and solving for _$)

yields

(373)

(374)

where

J- _ I + x/i-H_'/oc .
(375)

The Laplace transform may be inverted to find _(_) . _(_)

has two first order poles at _+ and __ Thus the residue

theorem may be used to find the inverse transform

_t)5_ aa e cs-s.Xs-s_)
"C- (._

(380)
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_+-S- _ "
(381)

It is easily verified that OL + S+ -- -__ , and O_+S.:-S÷.

Equation (381) may therefore be written

 6e)- s+-s_ (382)

In chapter I Eq. (13) a very useful relation was

derived,

(383)

Since <_(o),_(e)> : Sr'rl_'-r- k_(._ ) , Eq.(383)

can be written in terms of the normalized momentum correlation

function as

(384)

Substituting Eq. (383) into (384)yields
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z. s__S S t_'s_.s_c.- - _ .(385)

In chapter I Eq. (23) a relation was derived which is also of

interest.

_'T"< V_'V _. (386)

From Eq. (385) it is found that

<F, (o).H _o)'>-_ s_-r-s+.s_ (387)

Combining Eqs. (386) and (387) yields

s s--
- 3F'r_

(388)

From Eq.

is found that

(375) it is found that S.S_ : _g_.

3m

In this way it

(389)
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< _'V>
3_ (39o)

a result which we shall have more to say about later. If Eq.

(370) is used in conjunction with Eq. (389), _ , and _ may

be completely determined if _V_V> and _ can be found. As we

shall see in section 6, _ can be found from the measured dif-

fusion coefficient, Eq. (372), and __>can be found from

isotope separation data. In this way the velocity and force

correlation function may be determined.

Equation (366) may be written

t

(391)

If this equation is now differentiated with respect to t it is

found that

J_VJ_:_ K_o)_H(t)- ___(t-t,)at _(_,)dt,.
(392)

Of course Eq. (392) may be used to obtain Eq. (389) straight-

forwardly. Combining Eq. (386) and (384) gives
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<v V>
(393)

But it is not for this purpose that Eq. (392) was written.

Substituting _(_ ): O6_-c_t into Eq. (392) and performing

the necessary integration yields the second order differential

equation

(394)

which becomes on substitution of Eq. (369),

÷

O

(395)

Equation (395) is interesting for reasons that will be made

clear in section 7.

4. The Power Spectrum of the Velocity, the Mean

Square Displacement of a Particle,
the First and Second Order

Moments of the Momentum

We have already discussed the autocorrelation function

of a random variable; such as the momentum of a particle. We

have made the tacit assumption that the momentum of a particle

is a stationary random process, which means that the
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autocorrelatlon function is independent of the origin of time.

If OC[_) is a random variable, then stationarity may be

summarized as follo_s,

(396)

That is ¢ is a function of _ and not of t.

transform of _) may be taken as

The Fourier

(397)

the inverse transform as

(3.98)

Inserting this last relation into Eq. (396) yields

_Z_t- L_' (t+_')

(399)

Equation (396) requires that the rlght-hand side of this equa-

tion be independent of t. To insure that Eq, (396) is satisfied
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is imposed. Although _(03) Is complex, <C_0D)> is

evidently real. The quantity <C__&O')>differs from zero

only when G_ ' -_ -- _ , thus the quantity <C_Z(50) >

: <C_)).C_))> which is real. Inserting Eq. (400) into (399)
!

and performing the 6,,.) integration yields

(4oi)

From Eq. (366) we find that

(402)

By analogy with electrical systems where (_[_%) is the

current at time t, and <_> is the power < g_Z_UJ) > may

be viewed as a generalized power spectrum. Since <CtaL_)>

<C_00)._(-&O)>the_ integrand in Eq. (402) is even and

we may therefore write it as
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wTfa
(403)

We therefore call <C_)>/2T_ the power spectrum associated

with the random variable C_ (_) The following notation

shall be used

G ) '(_ = a-_ (_o4)

and Eq. (401) becomes

('C)= '-- [
2Tf

_.11_

(4o5)

Equation (405) may be inverted to give

(4o6)

To obtain a result expressed only in terms of future times,

i.e. for _ )O , we may split the region of integration

(o_;O); (O;OO) and make use of the stationarity condition.
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to obtain

@-{_J)= G+ C_) ÷ G_ (_); (408)

where

_Te_L_v_ cc')aC"G_ _._):
(4o9)

At this point it may be noted that

G÷ (_) - Q C-_'); (41o)

and

G(_) = I :-_'_ _-_"I
(411)
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Thus G(_ ) as we have defined it may be expressed as the cosine

transform of the autocorrelation function. This is the famous

Wfener-Khinchine Theorem.

power spectrum _p[O0) associated with the nor-The

malized velocity correlation function defined in the last sec-

tion may be defined from Eq. (411) as

(412)

For convenience in comparing these results with future work,

we define a function _(_O)- _ _(0D)S

Substituting Eq. (382) into Eq. (413) and integrating yields

or in terms of _, _, _ , 09 ,
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Another quantity that we want to find is the mean

square displacement of a molecule as a function of time.

(416)

Thus

(417)

Because _ (_) is assumed to be a stationary random variable,

<_(%,). _(_)> = < _(0). _(e_--_,)>" Substituting this

into Eq. (418) and using the definition of the normalized momen-

turn correlation function, it is found that

(419)
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where

, and

and the limits of integration are r_=

- (--t_ t) yields

(02 _ ) and

Z

(420)

To check this formula we apply it to the well known case of

Br0wnian motion where t._g-_) _.-_'_= The result is the

same as that found by Chandrasekhar.

way.

Furthermore, Eq. (420) may be used in yet another

Eq. (420) may be written as

<_,7,(t)_>_-

t

(421)

The definition of the diffusion coefficient is

= ]L_ < _,_)_>
t _ 6t "

(422)
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When Eq. (421) is substituted into Eq. (422), and the fact that

is an even function is exploited,of f_

• _ g t _q (423)

is obtained. Eq. (381) may now be used and the integral in

Eq. (423) evaluated yielding

- _ _-g" (s_ + _,) . (424)

Eq. (375) may be used to find,

K-r-

which, if _ = _, is precisely the Einstein relation Eq. (372).

This result strongly indicates that Eq. (369) is the one that

should be used for computational pruposes. This was also sug-

gested by Eq. (362).

For reasons that will become clear in the discussion,

the time dependence of the following moments will be needed.
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(426)

The subscript 1 indicates that the average is performed in an

ensemble in which the initial momentum of particle 1 is fixed.

The first moment is simply found to be

< _P,_' - [ m_t)-,] _,_o_.
(427)

The second moment is a bit more difficult to find.

that

t

Remembering

(428)

where I-, is the force acting on particle i, the second

moment is found to be

(429)

Remembering that the force is assumed to be a stationary random

variable, and performing the same change of variable as in
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obtaining Eq. (420), it is found that

(430)

Equation (384) may now be used in Eq. (430) to obtain

-
_t _t

(431)

Here it is assumed that is an even function of _',

t

_-- G_KT t ___(JC)

(432)

Equations (428) and (432) are the desired results.

5. Relaxation Time Equation

In this section a very simple kinetic model shall be

discussed. It should be pointed out immediately that this

model is studied for heuristic reasons only. It is indeed
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much less meaningful than all the work discussed in the pre-

vious sections, but it serves to clarify some points because

it begins with a kinetic equation. The work presented here

is closely related to work done by Haubold 73 and by Van Hove

and Verboven. 74'75

It is assumed that the following kinetic equation

describes the time evolution of the single particle velocity

distribution function (i_("_P,j_) for a homogeneous system in

the Markovian approximation

r,_(o) 7
(433)

to)
Here _y is a relaxation time, and _(_) is the

equilibrium velocity distribution function which is Maxwellian.

(o)
Defining _(_j_) : _(_)_ _(_) as the

deviation of the distribution function from equilibrium Eq.

(433) may be written

_- =
(434)

73. K. Haubold, Physica 28, 834 (1962).

74. L. Van Hove, and E. Verboven, Physica 27, 418 (1961).

75. E. Verboven, J. Math. Phys. _, 266 (1963).
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We want to find the non-Markovian kinetic equation which reduces

to Eq. (434) in the Markovlan limit, i.e., for long times.

It will be remembered that Pr_gogine and co-workers

have derived the following master equation for the velocity

distribution in a homogeneous system

(435)

non-Markovian because

over its whole history.

in such a way that Eq.

times.

where _+[t,) is a destruction fragment representing the

finite range of the initial spatial correlations. It is

assumed that _ _(h,) damps out very quickly. The remaining

term on the rlght-hand side of Eq. (435) describes the scat,

tering process or collision process which makes _(_)_)

evolve towards equilibrium. The equation, as it stands, is

_C_t) depends on an integration

As before, we want to choose _(_-ts)

(435) reduces to Eq. (434) for long

We adopt the "ansatz" as before that

- )

(436)

Substituting Eq.

equation by

that

(436) into Eq. (435), multiplying the resulting

and integrating over _ _l_l , it is found
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2% (437)

where

(438)

because the equilibrium average is zero.

Actually what is wanted is the average value of

q_l (t) given that at time zero the velocity was _¢0)

This can be stated in terms of a boundary condition on Eq.

(435).

,o)
- )°c-o:,).

(439)

Thu s

(4_o)

: 'k',;,co).,
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given this initial condition, Eq. (437) becomes

(441)

where the I indicates a fixed ensemble average in accordance

with Eq. (439). Multiplying Eq. (441) by _ Co) , and

averaging this over the Maxwellian distribution then gives,

after diving by _I/i(o)_

m

(4)-1-2)

which is of the same form as Eq. (366). The procedure dis-

cussed in the preceeding sections may now be applied to Eq.

(442) and identical results are obtained.

It must be emphasized that this derivation of Eq.

(442) is inferior to the previous derivation if for no other

reason that the relaxation time equation is unworthy of the

slightest recognition. It corresponds to no known physical

system. Furthermore, the regression of fluctuations in the

Markovian limit is adequately described by a relaxation time

equation of the form of Eq. (325); whereas, the distribution

function is scarcely if ever represented by a relaxation equa-

tion. The procedure followed here could have been used for
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the Fokker-Planck equation. Some recent work by Brocas 76

contains the relevant information.

6. Numerical Calculations

The computer experiment of Rahman was performed at

94.4°K and a density of 1.374 g/cm -3. The calculations based

upon the work presented here were done for the same conditions.

Several calculations of the normalized momentum correlation

function, and the corresponding power spectrum were performed.

In addition the mean square displacement, and the second

moment of the momentum as a function of time were calculated.

All of these calculations are displayed in Figs. (1)--(24),

which occupy the following pages. The reason that many cal-

culations were performed is simple: uncertainty in data.

As was shown in the preceeding pages a knowledge of the dif-

fusion coefficient, and of the mean square force, or the mean

Laplacian of the potential, is sufficient for the determination

of the parameters _ and _ through Eqs. (369), (370), and

(371). The difficulty arises from the fact that the computer

calculations of Rahman yield a diffusion coefficient D =

2.4 x 10 -5 cm2 whereas the value measured by Nagigadeh and
sec

Rice 77 is D = 2.72 x 10 -5 cm2 The difference between the
sec

computer results and the experiment may be explained by the

fact that Rahman used a Lennard-Jones potential with parameters

J. Brocas, private communication.

J. Nagigadeh and S. A. Rice, J. Chem. Phys. 36, 2710
(1962).



199

obtained from gas phase measurements. If the Intermolecular

forces are adequately represented by a Lennard-Jones potential

it is almost certain that the parameters will not be the same

as those measured in the gas phase. Furthermore, it is not

at all certain that the intermolecular potential is a Lennard-

Jones potential. Certainly there must be three body effects

present to change the picture even more. _ In point of fact,

Rahman has made the calculation of the diffusion coefficient

for the same fluid except with a modified Buckingham potential

and reports better agreement with the measurements of Nagizadeh

and Rice. Thus one should use the diffusion coefficient cal-

culated by Rahman instead of the experimental value, for the

real value does not correspond to the argon model used by Rahman.

The procedure adopted here was to perform the calculation for

both values of the diffusion coefficient so that both sides

of the argument are adequately presented.

A similar difficulty arises when the term < _zV

is considered. As was mentioned in Chapter II this quantity

can be obtained from isotope separation data for argon liquid

in equiribrium with argon vapor at the temperature and density

stated above. The data are scanty, and the inaccuracies in

choosing the correct value are large. The data are presented

in Fig.(24) for the benefit of the reader. Furthermore, this

data corresponds to the real intermolecular potential whereas

Rahman is dealing with a highly idealized potential. For the

same reasons as stated in the case of the diffusion coefficient

it is felt that it would be better to use a value for _ aV_
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computed by Rahman, had he performed this calculation. Unfor-

tunately, he did not; there is, however, a way to find it

from his data.

The right-hand side of Eq. (366) may be Taylor expanded

and only the term linear in t retained,

(4#3)

-

Thus for _--,o if we measure the slope in Rahman's computed

correlation function we may find OC_ ,. and..thereby.pemform

the remaining calculations. When this is done _V a V> is

found to be ll.O x lO 3 ergs/cm 2 as compared to 10.7 x lO 3 ergs

measured by Boata.

We present here a sample calculation of the velocity

correlation function and its power spectrum for argon at

T = 94.4°K and f = 1.374 g/cc. Rahman's value of the dif-

fusion coefficient D = 2.43 x 10 -9 cm2 is used. The best value
sec

for <_ that can be picked from Rahman's calculation

appears to be Ii.0 x 103 erg
---_ . For this sample calculation we
cm

take _ = _ as given in Eq. (369). Actually Eq. (370) or

Eq. (371), should be used but the numerical work is a bit more

complicated. Eqs. (369) and (371) are used, and the results

are displayed in the following curves; however, for the sake

of the sample calculation Eq. (369) is chosen.
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(45) is used to find _

_T IP.,.
--I

(4#4)

Equation (_99) is used to obtain eS_

<V_V> 0,65" '* /o
Ott/_ ._ _-- •

-&,,_ (4_5)

From Eqs. (_4_) and (445) e is found to be

or= 9'.o 6 _ lO ._-_-'2 (446)

and

(447)

Now

5_. i_ M _/= = -5.S
(_48)

Thus we see from Eq. (375) that SZ is complex.

is substituted into Eq. (388) it is found that

When this
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It should be noted that this function shows damped oscillatory

behavior. _(_) will always have oscillations if _z_ O

however, in the case that _ _ o there are no oscillations

in _C't') This effect is seen to be density dependent

because _ is related to the mean square force which is density

dependent.

Using the values for _ and _ in Eq. (415) yields

O, "/'2.0
_(uO) --

_.o.,.Iz_ - . gff _lo- ÷ lo-_a'_,.i
(449)

Eq. (421) may be used to compute the mean square dis-

placement. It is convenient to present this function in a

different form. A function T(t) may be defined

:
1..

k:_.TTt '/'(t')
Jo (450)

(45l)
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When _ and G as computed in Eqs. (444) and (446), are used

Eq. (432) may be used to compute the 2nd moment of the

momentum. Again it is convenient to present this function in

a different form. A function P(t) may be defined as

w

(452)

Again, when a and _ are computed from Eqs. (444) and (446)

are used

The following curves are all explicitly labelled so

that they will be immediately identifiable. Rahman's calcula-

tions are also presented, and the qualitative agreement is

obvious.
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7. Discussion

The normalized momentum correlation function and its

associated power spectrum calculated on the basis of the theory

presented in this chapter reproduce the computer calculations

fairly well. The positions of the maxima and minima of these

functions are in very good agreement with the computer cal-

culations of Rahman. There are some differences however. In

the region ._< _ _ I._ , Rahman's autocorrelation function

remains negative whereas the function calculated by theory

becomes positive. Furthermore, Rahman's power spectrum shows

oscillatory behavior after the first peak whereas the func-

tion calculated by theory does not.

Needless to say, the agreement is far beDter than one

might have expected for such a simple theory. The simplest

non-Markovian kernel was chosen as an ansatz. Certainly no

Markovian equation could account for the oscillations.

The motion of a particle may be interpreted in the

following manner. In a dense medium a particle is trapped in

a cage made up of its nearest neighbors. This particle moves

within the cage bouncing from wall to wall and thereby

executing a quasi-oscillatory motion. While the particle is

in the cage, before its momentum has decayed to the thermal

average, the cage changes shape and thereby effects the motion

of the molecule. In this way the configuration of the fluid

effects the momentum decay of the particle. The correlation

time of the cage, that is the time necessary for the cage to



loose order, therefore enters the momentum correlation function

in a natural way. It is very likely that the conflgurational

correlation, or relaxation time is _/_ .

Although the last statement cannot be proved, a plausi-

bility argument may be developed. Equation (395) was found

assuming that _ = _. It Just happens that this very same

differential equation for the momentum correlation function

wag derived by Gray on entirely different grounds. Gray

hypothesized a relaxation equation for the pair correlation

function and thereby found Eq. (395). The parameter _ which

appears in Eq. (395) corresponds to I/_c in his theory,

where _C_c is the configurational relaxation time.

It must be pointed out here that Gray's model rests

on a model kinetic equation for the evolution of the pair cor-

relation function, which is physically appealing, but is

restrictive because it pins down the statistical behavior of

the system. The procedure adopted in this work rests on a

particularly simple ansatz, and is not restrictive because the

non-Markovian equation found may be consistent with many

kinetic equations, as indeed it is. It _consistent with the

two equations already discussed, the relaxation time equation

presented here, and Gray's equation. Furthermore, it is con-

sistent with the non-Markovian equations which reduce to the

Fokker-Planck equation and the Crook equation, if a similar

ansatz is chosen.

There is one further point that must be made. To

derive a Fokker-Planck equation there must exist a time



such that

206

"C',:<< "c"<%..

and for which

< _P,c'_ 5' -,..,'z,

and all higher moments -_ _ n> I Equations (828) and)

(479) may be used to see whether this is true or not. Equa-

tion (382) may be expanded about t = 0 to give

_C'_) = o - s__S_ %'".

From Eq. (48) and (43) it is found that

%_S_ : OCt'.

Thus

and

J

I

< (_p, (_'_)

From Eq. (432) it is also seen that

= _,,,_K'T'L"_

for small_Y. This should be expected since for short times a

particle behaves coherently; that is, for short times a



particles position and momentum may be predicted from its initial

conditions through the classical equations of motion. In Figs.

(_i)--(22) we see that _(t) and consequently __ApLt_)_, and
?. i

<AP. _)_ become linear in _ for

If it is remembered that _p : '/_x,ld _z = o. *_._)

it can be seen that the necessary condition for the Fokker-

Planck equation is not met; that is the first and second

moments of the momentum only become linear for times greater

than the momentum correlation time. Of course when the Fokker-

Planck equation is derived, a Markov process is assumed. The

Markovlan correlation function is used to calculate the moments

of the momentum. We see here, however, that for short time

behavior this cannot be done. For short times non-Markovian

effects are important. These statements may be made on the

basis of Rahman's computer experiment.

There is another very interesting feature of Eq. (390).

Since _ = _ , equation (390) becomes

' 3 _

Thusif = _q

that is

we retrieve Eq. (166) of Chapter II

g
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This is very interesting because, Gray also finds Eq. (390).

These tb_ree independent derivations of equations llke Eq. (390)

are _m_ng. _ it will be remembered, was related to

which measures the diffusion of one

particle in the presence of another; and is therefore, in some

rather vague way connected with the configuratlonal memory or

conflgurational relaxation time.

Rahman computed the pair correlation function for

argon. This computed function may be considered exact for the

model system. One possible way to see whether or not the model

system corresponds to real liquid argon is to use the model

pair correlation function in conjunction with the equation of

state and the energy equation to predict the pressure and heat

o£_vaporlzation. Rahman was kind enough to make his data

available to us for this test. A Simpson's rule integration

was carried out and the pressure obtained was 51.2 atm. The

cal
energy of vaporization obtained was 1335 mole The measured

pressure of liquid argon at 94.4°K and 1.374 gm/cm 3 is around

160 atm, and the energy of vaporization is around 1550 cal
mole

The agreement is fairly good, especially when it is remembered

that the pressure is a._r_ sensitive test of an equilibrium

pair correlation function. Most theories of the pair correla-

tion function give much worse agreement than this. It may

nevertheless be concluded that the Lennard-Jones potential does

not adequately represent the molecular interactions in a dense

fluid such as argon.



Fig. 1.--The momentum autocorrelation function _(_

versus _" (t x lO12), from Rahman's computer experiment.
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Fig. 2.--The momentum autocorrelation function _(_f)

versus _C (t x 1012), in the Narkovian approximation.
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Fig. 3.--The momentum autocorrelation functions _ii( _

and _12(_0, versus _Y (t x 1012), from Eq. (371) (solid line),

and Eq. (369) (dashed llne) respectively for D = 2.43 x 10 -5

cm2/sec and _W_ = 10.7 x 103 ergs
cm 2 "
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Fig. 4.--The momentum autocorrelation functions _21( _

(solid llne) and _22(_) (dashed line) versus _ (t x I012)

from Eqs. (371) and (369) respectively, for D = 2.72 x 10 -5

cm2/sec and _V_@_ = 10.7 x I03 ergs
cm 2
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Fig. 5.--The momentum autocorrelation functions _31( _

(solid line) and_/_2 (dashed line) versus _ (t x 1012 ) from

Eqs. (371) and (369) respectively for D = 2.43 x 10 -5 cm2/sec

and <V _ = ii.0 x 103 ergs

cm 2
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Fig. 6.--The momentum correlation functions _41( _

(solid line) and _ 42(_f) (dashed llne) versus _" (t x 1012 )

from Eqs. (371) and (369) for D = 2.72 x 10 -5 cm2/sec and

<_V_ = II.0 x 103 ergs
cm 2 •
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Fig. 7.--The power spectrum (Eq. (415)) _ (_) versus

from Rahman's computer experiment.
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Fig. 8.--The power spectrum (Eq. (415))

in the Markovian approximation.

(_D) versus_3
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Fig. 9.--The power spectrum (Eq. (415)), _ ll(°O )

(circles) and _ 12 (_) (dots) versus _ , for D = 2.43 x

10 -5 cm2/sec and < _V _ : 10.7 x 103 ergs
cm 2
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Fig. 10.--The power spectra (Eq. (415)), $ 21 ( _ )

(circles) and _ 22(a)) (dots) versus _J , for D = 2.72 x

ergs
i0 -5 cm2/sec and _ V _'V_ = i0.7 x 10 3 ---2--

cm
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Fig. ll.--The power spectra (Eq. (415)) _ 31(_)

(circles) and _ 32(a)) (dots) versus 03 for h = 2.43 x

10 -5 cm2/sec and < Vz_;_ = ii.0 x 10 3 ergs
cm 2 "
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Fig. 12.--The mean square displacement (Eq. (451)) T(ar)

versus tO. from Rahman's computer experiment.
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Fig. 13.--The mean square displacement (Eq. (451)) Ti_0

versus q_ in the Markovian approximation.
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Fig. 14.--The mean square displacement (Eq. (451))

Tll(_ ) (solid llne) and T12_) (dashed line) versus _ from Eqs.

(371) and (369) respectively for D : 2.43 x I0 -5 cm2/sec and

<'XY _V'_ = I0.7 x I0-3 ergs
cm 2 •
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Fig. 15.--The mean square displacement (Eq. (451))

T21(_ (solid llne) and T22(_ ) (dashed line) versus _ from

Eqs. (371) and (369) respectively for D = 2.72 x 10 -5 cm2/sec

and <V IV_ = I0 7 x 103 ergs• 2
cm
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Fig. 16.--The mean square displacement (Eq. (451))

T31(_ ) (solid line) and T32(_ dashed line) versus _ from Eqs.

(371) and (369) respectively for D = 2.43 x lO-5cm2/sec and

_ V_ = II 0 x 10 +3 ergs
• 2

cm
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Fig. 17.--The mean square displacement (Eq. (451) T41(_ )

(solid line) and T42(_" ) (dashed line) versus _" from Eqs.

(371) and (369) respectively for D = 2.72 x l0 -5 cm2/sec and

< _7_'V> = ii.0 x I0 3 ergs
cm 2 "
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Fig 18.--The second moment of the momentum (Eq. (452))

-P(_ ) versus _ in the Markovian approximation.
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Fig. 19.--The second moment of the momentum (Eq. (452))

-PII(_) versus _ from Eq. (471) for D = 2.43 x 10 -5 cm2/sec

and _ _ __ = 10.7 x lO +3 ergs
cm 2
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Fig. 20.--The second moment of the momentum (Eq. (452))

-P21(:h') versus _C" from Eq. (471) for D = 2.72 x i0 -5 cm2/sec

and _ _Z _v_ = I0.7 x 103 ergs
2 "

cm
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Fig. 21.--The second moment of the momentum (Eq. (452))

-P31(_C _) versus "_ from Eq. (471) for D = 2.43 x l0 -5 cm2/sec
ergs

and <_zV_=ll.O x lO 3 _ .
cm
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Fig. 22.--The second moment of the momentum (Eq. (452))

-P41(_) versus _ from Eq. (471) for D = 2.72 x lO -5 cm2/sec

and <VaV_ = ll.0 x l03 ergs
cm 2 "
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Fig. 23.--The mean Laplacian of the potential as a

function of temperature from isotope separation data.
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APPENDIX

DERIVATION OF TEE INTEGRO-DIFFERENTIAL EQUATIONSFOR

TEE SINGLET AND DOUBLET DISTRIBUTION FUNCTIONS

In this Appendix we derive the integro-differential

equations for the singlet and doublet distribution functions

of an ideal inoic melt, on the basis of the Rice-Allnatt theory

of transport in liquids. The properties of the model melt are

described in sections 2 and 3 of chapter III.

We proceed by first deriving an equation for a binary

mixture, and then specializing to the case of the ideal ionic

melt.

Using the definition of the_:n body distribution

function

(453)

and the Liouville equation,

e55
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j--1

I

=0

it is readily found that

(N.-O!rl,,!

4-

_: I

(455)

where

(z_56)



It is convenient to define

e57

I I _NC_ ('N-_) ..-.(N- I')

(457)

For a pairwise additive intermolecular potential,

(458)

__ K . K_ ,aa_ (459)

whereupon with the use of (458) and (459) in Eq. (457) and inte-

gration with respect to _<_-')_"--
(i,I-I)

_ , it is found that

(46o)
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We note that _= o for all k because we are integrating over

the entire phase space of component _. Thus, combining Eqs.

(455) and (460)

0 _ tJ)

"Dt'_<,,)+ _p.,, .v,:,.r,.r_,_+ X'=<,vF,,,,,tc<,,_{).f. _ _

.&<,.r<''- _ c=,,4,)a_,.,_&,_ .

(461)

Of course Eq. (461) contains all the information inherent in

the Liouville equation because must be found from _ti_

and -_ e) from _ ''') etc. The basic assumption used to

truncate the hierarchy is that of Rice and Allnatt. The

formal procedure involves the introduction of time smoothing.

We define a coarse-grained distribution function

: _ t__ ,P_ .>
0

_=,-s)ds,
(462)

where _C_ is the interval of coarse graining.

time smoothes, one finds

If Eq. (461) is
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Now, following Rice and Allnatt we subdivide the force on a

particle into hard and soft components,

(463)

with the operator definition

Equation (463) assumes the form

J- ('<_l) -'b'-' r_'g (_) P(_)

_f. r E<,_. -<=>
(466)

0



This may be written

26O

.,_ C_,__ o% _ Jl_ (467)

where the notation is obvious. For the ideal ionic melt only

unlike ions undergo rigid-core encounters, whereupon

whereas involves interactions with both _ and _ ions.

It is convenient at this point to introduce the Green's

function (phase space transformation function) which has the

property that

_N_tJ.

-FVs(R.j-_R.j)_(&j-&, )
_)--"l

_J_s

(47o)
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where the increments in momenta and coordinates must be com-

puted from the complete N-body dynamics.

Green's functions corresponding to the reduced n body

problem are obtained using the definitions

= _ _ , (4711

(472}

I

'i_"'P'°'I-- _'°__P_'3'
(473)
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Starting from the Liouville equation satisfied by K (N) equa-

tions for the two body Green's functions _I=_C_J,cz_.'), K' (_,j_l)j

and _'_"(_l_"/&_) , may be found by integrating the

Liouville equation with respect to all coordinates and momenta

except those of (_I, _3), (_l, 81), and (81, 82), respectively.

We display only the equations (_l, 81), and (_l, _2) since

the other is obtained by simple symmetry considerations.

+- -_Z'oqj_._ %1 _L)_ W-- F_'_bot_- _Tp_._" _,_z_')

I¢=I
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and

..-..- 4.

+

-I.J '
__1_-_._

Using the two-body Green's function (468) may be displayed in

the form

-|
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In the Rice-Allnatt theory the repulsive potential is taken to

be an infinitely repulsive hard core.

in the time interval (0_ O + ) and

Note that __ ---O, _ "_t _ and

Thus _J#_i --O except

In Eq. (475) the integrals on the right-hand side of

the equation vanish. Thus Eq. (475) may be solved for

-_,,_J "_W_, _ (_|J_'_ _) and the result substituted in

Eq. (476). After noting that _(_) _I ' _i _ (_I_I_S

integrates to zero it is found that

_s +_,_,,_,K ''>

t_J / /

/ /

(477)

During the time interval (O_ O÷ _ _(') satisfies a

Liouville equation in pair space, a solution of which is

rL_,,_,a,l_,P_,,_,g,;_)_ (_,-_-,_,)'_(_-_,-,_3,(_)__ _ _ _ _
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With the substitution _ (_I_BI) ^'_)

integration over the indicated volume leads to

(479)

where

(480)

(481)
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From the relations

0 / ' _'b_l'

oI.I ,0 oI.I; (:W,,_. -- (W'I_r_l
_ = _S 4- _S

(4-82)

using the same techniques as Rice and Allnatt and Ross, it is

found that

(483)

With the final definitions

A (l_ E
I | Ol.l ' _ .. (484)
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we obtain the desired form of the equation

which has the solution given in section 2 of chapter III.


